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Preface

Over the past few decades, tremendous interest has been paid to the field of fractional calculus,

which finds wide applications in physics, biology, chemistry, finance, signal and image processing,

hydrology, non-Newtonian fluids, etc. Given that the analytical solution to fractional models is

extremely complicated in terms of transcendental functions and analytically intractable in complex

cases, numerical methods become a powerful and useful tool to handle fractional differential equations.

This is the motivation for the Special Issue “Numerical Solution and Applications of Fractional

Differential Equations” (NSAFDE) in the Journal of Fractal and Fractional.

This issue is the 2nd Edition of NSAFDE. It received 48 submissions and produced 12 accepted

and published papers, all of which were subject to a rigorous review process. This reprint is a result

of these 12 collections, which cover the topics of analytical techniques, numerical methods, and the

applications for fractional differential equations.

Regarding the analytical techniques, the complete discriminant system method of polynomials,

the traveling wave transformation, the Strang splitting algorithm, the spectral analysis method, the

cones fixed point theorem, Filippov’s approach, the natural transform, the residual power series

method, and the Tikhonov Regularization have been considered.

The numerical methods in the collection include the mixed finite element method, the artificial

boundary method, the Chebyshev spectral method, the meshless technique, the compact difference

scheme, and the fast Alikhanov method.

Finally, some interesting applications have been presented, such as the second-grade fluid over

a semi-infinite plate, biological population dynamics, the liquid crystal model, the Hopfield neural

network, the preloaded compliance system and the fractional Cauchy problem in a circular annular

region.

All the Guest Editors of this Special Issue are grateful to the authors for their quality contributions,

to the reviewers for their valuable comments and advice, and to the administrative staff of MDPI

for their support in completing this Special Issue. Special thanks go to the Section Managing Editor,

Mr Ethan Zhang, for his excellent collaboration and valuable assistance.

Libo Feng, Yang Liu, and Lin Liu

Guest Editors

vii





Citation: Wang, J.; Li, Z. A

Dynamical Analysis and New

Traveling Wave Solution of the

Fractional Coupled

Konopelchenko–Dubrovsky Model.

Fractal Fract. 2024, 8, 341. https://

doi.org/10.3390/fractalfract8060341

Academic Editor: Nikolay

A. Kudryashov

Received: 7 May 2024

Revised: 29 May 2024

Accepted: 4 June 2024

Published: 6 June 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

fractal and fractional

Article

A Dynamical Analysis and New Traveling Wave Solution of the
Fractional Coupled Konopelchenko–Dubrovsky Model

Jin Wang and Zhao Li *
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* Correspondence: clizhao10.26@163.com

Abstract: The main object of this paper is to study the traveling wave solutions of the fractional

coupled Konopelchenko–Dubrovsky model by using the complete discriminant system method of

polynomials. Firstly, the fractional coupled Konopelchenko–Dubrovsky model is simplified into

nonlinear ordinary differential equations by using the traveling wave transformation. Secondly,

the trigonometric function solutions, rational function solutions, solitary wave solutions and the

elliptic function solutions of the fractional coupled Konopelchenko–Dubrovsky model are derived by

means of the polynomial complete discriminant system method. Moreover, a two-dimensional phase

portrait is drawn. Finally, a 3D-diagram and a 2D-diagram of the fractional coupled Konopelchenko–

Dubrovsky model are plotted in Maple 2022 software.

Keywords: Konopelchenko–Dubrovsky model; complete discriminant system; traveling wave

solution; phase portrait

1. Introduction

In the present era, nonlinear evolution equations (NLEEs) [1–4] are employed in a
number of areas like physics, chemistry, biology, fluid dynamics, engineering, optical fibers,
plasma, and hydrodynamics. The analytical solutions of NLEEs can be applied to control
complex behavior and difficult phenomena when the system displays [5–23]. While there is
no unified method to obtain the exact solution of nonlinear evolution equations, most of the
time, NLEEs can be converted into an ordinary differential equation by taken the traveling
wave transformation. Based on the efforts of many predecessors, various methods have
been imposed to solve NLEEs precisely and analyze various wave phenomena. He and
Wu [24] proposed the first-time Exp-function method to seek solitary solutions, periodic so-
lutions and compacton-like solutions of the KdV equation and Dodd–Bullough–Mikhailov
equation. By using Hirota’s bilinear transformation method, Ma proved the existence of
N-soliton solutions of the (2+1)-dimensional KdV equation, the Kadomtsev–Petviashvili
equation, the (2+1)-dimensional Hirota–Satsuma–Ito equation, and a combined pKP–BKP
equation [25,26], respectively. Li et al. presented the (w/g)-expansion method [27]. Later,
Arafat and his collaborators applied the customized (w/g)-expansion method to found
the optical soliton solutions of the paraxial nonlinear Schrödinger equation and fractional
Biswas–Arshed model [28,29], respectively. Wazwaz has derived the solitons and periodic
solution of the Dodd–Bullough–Mikhailov and the Tzitzeica–Dodd–Bullough equations
via the tanh-function approach [30]. Seadawy and Iqbal analyzed the nonlinear damped
Korteweg–de Vries equation in an unmagnetized collisional dusty plasma via the direct
algebraic approach [31]. Arafat also investigated scores of broad-spectral soliton solutions
to the stated system via the auxiliary equation technique [32]. However, research on the
traveling wave solutions of more complex fractional order NLEEs is still ongoing, and there
are still a large number of open issues that need to be addressed by researchers.

Fractal Fract. 2024, 8, 341. https://doi.org/10.3390/fractalfract8060341 https://www.mdpi.com/journal/fractalfract1
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In this paper, we consider the fractional coupled Konopelchenko–Dubrovsky model [33]

{
Dκ

t u − uxxx − 6auux +
3
2 b2u2ux − 3vy + 3buxv = 0,

vx = uy,
(1)

where Dκ
t u is the conformable fractional derivative. u = u(x, y, t) and v = v(x, y, t)

represent the velocity components along the horizontal and vertical axes, respectively. a
and b stand for the amplitude of the wave. When κ = 1, Equation (1) become the well-
known integer-order Konopelchenko–Dubrovsky model [34]. The main object of this paper
is to study the traveling wave solution of the fractional coupled Konopelchenko–Dubrovsky
model by using the complete discriminant system method of polynomials. On the one
hand, the main effort of this article is to focus on constructing the traveling wave solution
of Equation (1). On the other hand, without solving Equation (1), its dynamic branch will
be analyzed.

The conformable fractional derivative was first proposed by Khalil et al. [35]. Com-
pared with traditional fractional derivatives, the conformable fractional derivative has a
more intuitive physical meaning. At present, it has been widely used in the construction
of infectious disease dynamics models, nonlinear system modeling, and thermal science
fields. Its definition is usually described as follows.

Definition 1 ([36]). Let f : [0, ∞) → R . Then, the conformable derivative of f of order κ is
defined as

Dκ
t f (t) = lim

ε→0

f (t + εt1−κ)− f (t)

ε
, ∀t ∈ (0,+∞), κ ∈ (0, 1], (2)

and the function f is κ-conformable differentiable at a point t if the limit in Equation (2) exists.

The remaining sections of this article are arranged as follows: In Section 2, the traveling
wave solutions of Equation (1) are constructed by using the complete discriminant system
method. Moreover, a two-dimensional phase portrait is drawn. In Section 3, the three-
dimensional, two-dimensional, and density plots to some obtained solutions of Equation (1)
are plotted. Finally, a brief summary is presented.

2. Dynamical Analysis and Traveling Wave Solutions of Equation (1)

2.1. Traveling Wave Transformation

In this section, we first consider the wave transformation

u(x, y, t) = U(ξ), v(x, y, t) = V(ξ), ξ = kx + ly + μ
tκ

κ
, (3)

Substituting Equation (3) into Equation (1), we have

{
μU′ − k3U′′′ − 6akUU′ + 3

2 kb2U2U′ − 3lV′ + 3kbU′V = 0,
kV′ = lU′.

(4)

Integrating the second equation of Equation (4), we obtain

V =
l

k
U. (5)

Substituting Equation (5) into the first equation of Equation (4), we have

−k3U′′ +
1
2

kb2U3 + (
3lb

2
− 3ak)U2 + (μ − 3l2

k
)U = d1, (6)

where d1 is the integral constant.

2
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2.2. Dynamical Analysis

Here, we consider the planar dynamic system of Equation (6) when d1 = 0

{
dU
dξ = z,
dz
dξ = ℓ3U3 + ℓ2U2 + ℓ1U,

(7)

where ℓ3 = b2

2k2 , ℓ2 = 1
k3 (

3lb
2 − 3ak), ℓ1 = 1

k3 (μ − 3l2

k ).
The first integration of Equation (7) is

H(U, z) =
1
2

z2 − ℓ3

4
U4 − ℓ2

3
U3 − ℓ1

2
U2 = h. (8)

By setting the parameter values of fixed Equation (7), we draw the planar phase
portrait of Equation (7), as shown in Figure 1.

(a) ℓ3 “ 1, ℓ2 “ 2, ℓ1 “ 1 (b) ℓ3 “ 1, ℓ2 “ 2, ℓ1 “ 2 (c) ℓ3 “ 1, ℓ2 “ 3, ℓ1 “ 1 (d)ℓ3 “ 1, ℓ2 “ ´2
?

2, ℓ1 “ ´2

Figure 1. Phase portrait of Equation (7).

2.3. Traveling Wave Solutions of Equation (1)

Multiplying both sides of Equation (6) by U′ simultaneously and integrating it yields

(U′)2
= b4U4 + b3U3 + b2U2 + b1U + b0, (9)

where b4 = b2

4k2 , b3 = lb
k3 − 2a

k2 , b2 = μ

k3 − 3l2

k4 , b1 = − 2d1
k3 , b0 = 2d2; here, d2 is the integral

constant.
Here, we make a transformation:

{
w = (b4)

1
4 (U + b3

4b4
),

χ = (b4)
1
4 ξ.

(10)

Substituting Equation (10) into Equation (9), we obtain:

w2
χ = w4 + c2w2 + c1w + c0, (11)

where c2 = b2√
b4

, c1 = (
b3

3
8b2

4
− b2b3

2b4
+ b1)(b4)

− 1
4 , c0 =

−3b4
3

256b3
4
+

b2b2
3

16b2
4
− b1b3

4b4
+ b0.

By integrating Equation (11) once, one has:

±(χ − χ0) =
∫

dw√
w4 + c2w2 + c1w + c0

, (12)

where χ0 denotes an integrating constant.
Denote that G(w) = w4 + c2w2 + c1w + c0. We derive its complete discrimination

system in the following form:

3
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D1 = 4, D2 = −c2, D3 = −2c3
2 + 8c2c0 − 9c2

1, D4 = −c3
2c2

1 + 4c4
2c0 + 36c2c2

1c0 − 32c2
2c2

0 − 27
4 c4

1 + 64c3
0,

E2 = c1c2
2 − 32c2c0.

(13)

According to the root-classifications of Equation (11), we will discuss the traveling
wave solutions of Equation (1) under nine cases.

Case 1: D2 < 0, D3 = 0, D4 = 0, G(w) = [w2 + q2]
2
.

By combining Equation (9) with Equation (3), the traveling wave solutions of Equation (1)
can be expressed as below:

u1(x, y, t) =
2ak − lb

kb2 +

√
2(μk − 3l2)

bk
tan [

√
2(μk − 3l2)

bk3 (

√
b

2k
(kx + ly + μ

tκ

κ
)− χ0)]. (14)

v1(x, y, t) =
2akl − l2b

k2b2 +
l
√

2(μk − 3l2)

bk2 tan [

√
2(μk − 3l2)

bk3 (

√
b

2k
(kx + ly + μ

tκ

κ
)− χ0)]. (15)

Case 2: D2 = 0, D3 = 0, D4 = 0, G(w) = w4. In this situation, the traveling wave
solutions of Equation (1) take the form:

u2(x, y, t) =
2ak − lb

kb2 −
√

2k

b
(

√
b

2k
(kx + ly + μ

tκ

κ
)− χ0)

−1

. (16)

v2(x, y, t) =
2akl − l2b

k2b2 − l

√
2
bk

(

√
b

2k
(kx + ly + μ

tκ

κ
)− χ0)

−1

. (17)

Case 3: D2 > 0, D3 = 0, D4 = 0, G(w) = (w − α)2(w − β)2, where α, β are real
number, and α > β.

(i) If w > α or w < β, the traveling wave solutions of Equation (1) take the form:

u3,1(x, y, t) = α

√
k

2b
− lb − 2ak

kb2 + (β − α)

√
k

2b
coth

(α − β)

(√
b

2k (kx + ly + μ tκ

κ )− χ0

)

2
. (18)

v3,1(x, y, t) =
lα√
2bk

− l2b − 2akl

k2b2 +
l(β − α)√

2bk
coth

(α − β)

(√
b

2k (kx + ly + μ tκ

κ )− χ0

)

2
. (19)

(ii) If β < w < α, the traveling wave solutions of Equation (1) take the form:

u3,2(x, y, t) = α

√
k

2b
− lb − 2ak

kb2 + (β − α)

√
k

2b
tanh

(α − β)

(√
b

2k (kx + ly + μ tκ

κ )− χ0

)

2
. (20)

v3,2(x, y, t) =
lα√
2bk

− l2b − 2akl

k2b2 +
l(β − α)√

2bk
tanh

(α − β)

(√
b

2k (kx + ly + μ tκ

κ )− χ0

)

2
. (21)

Case 4: D2 > 0, D3 > 0, D4 = 0, G(w) = (w − α)2(w − β)(w − γ), where α, β and γ
are real number, β > γ.

(i) If α > β and w > β, or α < γ and w < γ, the implicit traveling wave solutions of
Equation (1) can be expressed as below:

4



Fractal Fract. 2024, 8, 341

±
(√

b

2k
(kx + ly + μ

tκ

κ
)− χ0

)
=

1
(α − β)(α − γ)

ln
[

√
(kb2u4,1 + lb − 2ak −

√
2(kb)

3
2 β)(α − γ)−

√
(α − β)(kb2u4,1 + lb − 2ak −

√
2(kb)

3
2 γ)]

2

|kb2u4,1 + lb − 2ak −
√

2(kb)
3
2 α|

.

(22)

±
(√

b

2k
(kx + ly + μ

tκ

κ
)− χ0

)
=

1
(α − β)(α − γ)

ln
[

√
(k2b2v4,1 + l2b − 2alk −

√
2(kb)

3
2 lβ)(α − γ)−

√
(α − β)(k2b2v4,1 + l2b − 2alk −

√
2(kb)

3
2 lγ)]

2

|k2b2v4,1 + l2b − 2alk −
√

2(kb)
3
2 lα|

.

(23)

(ii) If α > β and w < γ, or α < γ and w < β, the implicit traveling wave solutions of
Equation (1) can be expressed as below:

±
(√

b

2k
(kx + ly + μ

tκ

κ
)− χ0

)
=

1
(α − β)(α − γ)

ln
[

√
(kb2u4,2 + lb − 2ak −

√
2(kb)

3
2 β)(γ − α)−

√
(β − α)(kb2u4,2 + lb − 2ak −

√
2(kb)

3
2 γ)]

2

|kb2u4,2 + lb − 2ak −
√

2(kb)
3
2 α|

.

(24)

±
(√

b

2k
(kx + ly + μ

tκ

κ
)− χ0

)
=

1
(α − β)(α − γ)

ln
[

√
(k2b2v4,2 + l2b − 2alk −

√
2(kb)

3
2 lβ)(γ − α)−

√
(β − α)(k2b2v4,2 + l2b − 2alk −

√
2(kb)

3
2 lγ)]

2

|k2b2v4,2 + l2b − 2alk −
√

2(kb)
3
2 lα|

.

(25)

(iii) If β > α > γ, the implicit traveling wave solutions of Equation (1) can be expressed
as below:

±
(√

b

2k
(kx + ly + μ

tκ

κ
)− χ0

)
=

1
(β − α)(α − γ)

arcsin
(kb2u4,3 + lb − 2ak −

√
2(kb)

3
2 β)(α − γ) + (α − β)(kb2u4,3 + lb − 2ak −

√
2(kb)

3
2 γ)

|(kb2u4,3 + lb − 2ak −
√

2(kb)
3
2 α)(β − γ)|

.

(26)

±
(√

b

2k
(kx + ly + μ

tκ

κ
)− χ0

)
=

1
(β − α)(α − γ)

arcsin
(k2b2v4,3 + l2b − 2alk −

√
2(kb)

3
2 lβ)(α − γ) + (α − β)(k2b2v4,3 + l2b − 2alk −

√
2(kb)

3
2 lγ)

|(k2b2v4,3 + l2b − 2alk −
√

2(kb)
3
2 lα)(β − γ)|

.

(27)

Case 5: D2 > 0, D3 = 0, D4 = 0, E2 = 0, G(w) = (w − α)3(w − β), where α, β are real
numbers.

5
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When w > α and w > β, or w < α and w < β, the traveling wave solutions of
Equation (1) take the form:

u5(x, y, t) =
8
√

2(α − β)k
3
2

√
b[(β − α)2(

√
b(kx + ly + μ tκ

κ )−
√

2kχ0)
2 − 4]

+

√
2α(kb)

3
2 + 2ak − lb

kb2 (28)

v5(x, y, t) =
8
√

2(α − β)lk
1
2

√
b[(β − α)2(

√
b(kx + ly + μ tκ

κ )−
√

2kχ0)
2 − 4]

+

√
2lα(kb)

3
2 + 2akl − l2b

k2b2 (29)

Case 6: D4 = 0, D2D3 < 0, G(w) = (w − α)2
[
(w − l1)

2 + s2
1

]
. The traveling wave

solutions of Equation (1) take the form:

u6(x, y, t) =
2ak − lb

kb2 +

√
2k

b

[
e±

√
(α−l1)

2+s2
1(
√

b
2k (kx+ly+μ tκ

κ )−χ0) − γ

]
+
√
(α − l1)

2 + s2
1(2 − γ)

[
e±

√
(α−l1)

2+s2
1(
√

b
2k (kx+ly+μ tκ

κ )−χ0) − γ

]2

− 1

, (30)

v6(x, y, t) =
2akl − l2b

k2b2 + l

√
2
kb

[
e±

√
(α−l1)

2+s2
1(
√

b
2k (kx+ly+μ tκ

κ )−χ0) − γ

]
+
√
(α − l1)

2 + s2
1(2 − γ)

[
e±

√
(α−l1)

2+s2
1(
√

b
2k (kx+ly+μ tκ

κ )−χ0) − γ

]2

− 1

, (31)

where γ = α−2l1√
(α−l1)

2+s2
1

.

Case 7: D4 > 0, D3 > 0, D1 > 0, G(w) = (w − α1)(w − α2)(w − α3)(w−α4), in which
α1, α2, α3, α4 is real number and α1 > α2 > α3 > α4.

When w > α1 or w < α4, the traveling wave solutions of Equation (1) take the form:

u7,1(x, y, t) =
2ak − lb

kb2

+

√
2k

b

α2(α1 − α4) sn2
(√

(α1−α3)(α2−α4)
2

(√
b

2k (kx + ly + μ tκ

κ )− χ0

)
, m

)
− α1(α2 − α4)

(α1 − α4) sn2

(√
(α1−α3)(α2−α4)

2

(√
b

2k (kx + ly + μ tκ

κ )− χ0

)
, m

)
− (α2 − α4)

,

v7,1(x, y, t) =
2akl − l2b

k2b2

+l

√
2
kb

α2(α1 − α4) sn2
(√

(α1−α3)(α2−α4)
2

(√
b

2k (kx + ly + μ tκ

κ )− χ0

)
, m

)
− α1(α2 − α4)

(α1 − α4) sn2

(√
(α1−α3)(α2−α4)

2

(√
b

2k (kx + ly + μ tκ

κ )− χ0

)
, m

)
− (α2 − α4)

,

(32)
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u7,2(x, y, t) =
2ak − lb

kb2

+

√
2k

b

α4(α2 − α3) sn2
(√

(α1−α3)(α2−α4)
2

(√
b

2k (kx + ly + μ tκ

κ )− χ0

)
, m

)
− α3(α2 − α4)

(α2 − α3) sn2

(√
(α1−α3)(α2−α4)

2

(√
b

2k (kx + ly + μ tκ

κ )− χ0

)
, m

)
− (α2 − α4)

,

v7,2(x, y, t) =
2akl − l2b

k2b2

+l

√
2
kb

α4(α2 − α3) sn2
(√

(α1−α3)(α2−α4)
2

(√
b

2k (kx + ly + μ tκ

κ )− χ0

)
, m

)
− α3(α2 − α4)

(α2 − α3) sn2

(√
(α1−α3)(α2−α4)

2

(√
b

2k (kx + ly + μ tκ

κ )− χ0

)
, m

)
− (α2 − α4)

,

(33)

in which m2 = (α1−α4)(α2−α3)
(α1−α3)(α2−α4)

.

Case 8: D4 < 0, D2D3 � 0, then G(w) = (w − α)(w − β)
[
(w − l1)

2 + s2
1

]
, where real

number α > β, l1, s1 > 0.
The traveling wave solutions of Equation (1) take the form:

u8(x, y, t) =
2ak − lb

kb2 +

√
2k

b

acn (

√
−2s1m1(α−β)

2mm1
( b

2k (kx + ly + μ tκ

κ )− χ0), m) + e2

ccn (

√
−2s1m1(α−β)

2mm1
( b

2k (kx + ly + μ tκ

κ )− χ0), m) + e4

, (34)

v8(x, y, t) =
2akl − l2b

k2b2 + l

√
2
kb

acn (

√
−2s1m1(α−β)

2mm1
( b

2k (kx + ly + μ tκ

κ )− χ0), m) + e2

ccn (

√
−2s1m1(α−β)

2mm1
( b

2k (kx + ly + μ tκ

κ )− χ0), m) + e4

, (35)

in which e1 = 1
2 (α + β)e3 − 1

2 (α − β)e4, e2 = 1
2 (α + β)e4 − 1

2 (α − β)e3, e3 = α − l1 − s1
m1

,

e4 = α − l1 − s1m1, E =
s2

1+(α−l1)(β−l1)
s1(α−β)

, m1 = E −
√

E2 + 1, m2 = 1
1+m2

1
.

Case 9: D4 > 0, D2D3 � 0, then G(w) =
[
(w − l1)

2 + s2
1

][
(w − l2)

2 + s2
2

]
, where

l1, l2, s1, s2 are real and s1 � s2 > 0. The traveling wave solutions of Equation (1) take
the form:

u9(x, y, t) =
2ak − lb

kb2

+

√
2k

b
· e1 sn (η( b

2k (kx + ly + μ tκ

κ )− χ0), m) + e2 cn (η( b
2k (kx + ly + μ tκ

κ )− χ0), m)

e3 sn (η( b
2k (kx + ly + μ tκ

κ )− χ0), m) + e4 cn (η( b
2k (kx + ly + μ tκ

κ )− χ0), m)
,

(36)

v9(x, y, t) =
2akl − l2b

k2b2

+l

√
2
kb

· e1 sn (η( b
2k (kx + ly + μ tκ

κ )− χ0), m) + e2 cn (η( b
2k (kx + ly + μ tκ

κ )− χ0), m)

e3 sn (η( b
2k (kx + ly + μ tκ

κ )− χ0), m) + e4 cn (η( b
2k (kx + ly + μ tκ

κ )− χ0), m)
,

(37)

in which e1 = l1e3 + s1e4, e2 = l1e4 − s1e3, e3 = −s1 − s2
m1

, e4 = l1 − l2, E =
(l1−l2)

2+s2
1+s2

2
2s1s2

,

m1 = E +
√

E2 − 1, m2 =
m2

1−1
m2

1
, η =

s2

√
(e2

3+e2
4)(m2

1e2
3+e2

4)
e2

3+e2
4

.

3. Numerical Simulation

In order to understand the dynamical processes and mechanisms of complex phenomena
of the fractional coupled Konopelchenko–Dubrovsky model, numerical simulations of the ob-
tained soliton solutions are given in this section. As is vividly shown in Figures 2a, 3a and 4a,
u1(x, y, t), u2(x, y, t) and u3(x, y, t) stand for the tangent function solutions, the rational
function solutions and the hyperbolic function solutions, respectively. Figures 2b, 3b and 4b

7
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denote the level curve at time t = 1. Furthermore, Figures 2c, 3c and 4c represent the density
plots. Figures 2d, 3d and 4d stand for the contour plots.

(a) Three-dimension graphic (b) Two-dimension graphic

(c) Density plot (d) Contour plot

Figure 2. Equation (14) for a = 3, b = 4, k = 1, l = 2, μ = 16.

(a) Three-dimension graphic (b) Two-dimension graphic

(c) Density plot (d) Contour plot

Figure 3. Equation (16) for a = k = l = 1, b = 2, μ = 3.

8
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(a) Three-dimension graphic (b) Two-dimension graphic

(c) Density plot (d) Contour plot

Figure 4. Equation (18) for a = k = l = 1, b = 2, μ = 2, α = 1√
2

, β = −1√
2

.

4. Conclusions

In this article, we have presented the traveling wave solutions of Equation (1) via the
complete discriminant system method, which is one of the most useful tools in solving
NLEEs. The trigonometric function solutions, the rational function solutions, the hyperbolic
function solutions, the exponential function solutions, and the Jacobian elliptic function so-
lutions are obtained. Lastly, in order to understand the mechanisms of physical phenomena
for Equation (1), we have also depicted two-dimensional and three-dimensional diagrams.
In future work, we will focus on the traveling wave solutions and dynamic behavior of
more complex NLEEs. Furthermore, we will also use the Darboux transformations to
discuss the N-soliton solutions of more complex NLEEs.
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Abstract: The main purpose of this article is to investigate the dynamic behavior and optical soliton

for the M-truncated fractional paraxial wave equation arising in a liquid crystal model, which is usu-

ally used to design camera lenses for high-quality photography. The traveling wave transformation

is applied to the M-truncated fractional paraxial wave equation. Moreover, a two-dimensional dy-

namical system and its disturbance system are obtained. The phase portraits of the two-dimensional

dynamic system and Poincaré sections and a bifurcation portrait of its perturbation system are drawn.

The obtained three-dimensional graphs of soliton solutions, two-dimensional graphs of soliton solu-

tions, and contour graphs of the M-truncated fractional paraxial wave equation arising in a liquid

crystal model are drawn.

Keywords: paraxial model; bifurcation; phase portrait; chaos behavior; M-truncated fractional derivative

1. Introduction

Fractional partial differential equations (FPDEs) are partial differential equations [1,2]
that involve fractional derivatives and are commonly used to describe complex systems
with memory effects. FPDEs have wide applications in fluid mechanics, biology, signal
processing, and financial mathematics [3]. In general, due to the widespread application of
fractional derivatives in multiple fields [4–8], many researchers have proposed many differ-
ent fractional derivatives from different perspectives. For example, the Riemann–Liouville
fractional derivative, the conformable fractional derivative, the Caputo fractional deriva-
tive, and the Grünwald–Letnikov fractional derivative. Therefore, with the continuous
development of fractional derivative theory, researchers have also delved deeper into the
theory of fractional derivatives. Additionally, many different types of FPDEs have been
proposed. Due to the complexity and diversity of fractional derivatives, on the one hand,
many experts use the finite element method, the spectral method, and the finite difference
method to solve the numerical solutions of these equations. On the other hand, many
researchers use mathematical analysis methods to construct exact solutions [9,10] to these
equations. The main purpose of this article is to study the dynamic behavior and soliton
solutions of a very important class of FPDEs.

In this study, the M-truncated fractional paraxial wave equation arising in a liquid
crystal model is presented as follows [11]:

i
∂ψ

∂y
+

a1

2 κ
D

2α,d
M,t ψ +

a2

2
∂2ψ

∂x2 + a3|ψ|2ψ = 0, (1)

where a1, a2, a3 are real constants, which represent the coefficients of the dispersal effect,
the Kerr nonlinearity effect, and the diffraction effect, respectively. κD

2α,d
M,t stands for the
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M-fractional derivative, which was proposed by Oliveira and Sousa [12]. ψ = ψ(x, y, t),
where the variables x, y, t represent the transverse, longitudinal, and temporal propagation,
respectively. In [13,14], Hamood, et al. used the φ6 model expansion technique and the
Sardar subequation method to study the optical solitons of the paraxial wave model,
respectively. In [11], Mannaf et al. studied the optical soliton solutions of Equation (1) by
using the extended tanh method and the modified extended tanh method, respectively.
However, despite our best efforts, there is still an insufficient body of literature on the
dynamic behavior and soliton solutions of Equation (1). Solitons are a special wave
phenomenon that occurs in nonlinear physics. Solitons were first proposed in the study of
shallow water waves, but were later widely applied in fields such as optics, acoustics, and
quantum physics. The optical soliton solution is usually used to describe the mathematical
solution of the propagation of optical solitons under specific conditions, for example, the
solution to the Schrödinger equation. This article will conduct research from two aspects.
On the one hand, by using the method of planar dynamical systems, the dynamic behavior
of two-dimensional dynamical systems and their disturbance systems are studied. On
the other hand, the optical soliton solution of Equation (1) is constructed using the planar
dynamical system method.

The remaining part of this article is arranged as follows: In Section 2, the phase
portrait of the two-dimensional dynamical system and its perturbed system are discussed.
In Section 3, the optical soliton solutions of Equation (1) are constructed. Finally, a brief
conclusion is given.

2. Bifurcation and Chaotic Behaviors

2.1. Preliminary

Definition 1 (M-truncated fractional derivative [15]). For α ∈ (0, 1], the M-truncated fractional
derivative of f : [0,+∞) → (−∞,+∞) is defined as

κD
2α,d
M,t ( f ) = lim

h→0

f (tκEd(htα))− f (t)

h
, 0 < α < 1, d > 0.

In Definition 1, Ed(z) represents the truncated Mittag-Leffler function of one parameter,
which is defined as

κEd(z) =
κ

∑
j=0

zj

Γ(dj + 1)
, z ∈ [0,+∞).

M-truncated fractional derivative has very important properties, and relevant conclusions
can be referenced in reference [15].

2.2. Mathematical Derivation

Firstly, let us introduce the the wave transformation

ψ(x, y, t) = Ψ(ξ)eiη , ξ = m1x + m2y + Γ(d+1)
α ωtα, η = r1x + r2y + Γ(d+1)

α τtα + δ. (2)

Inserting Equation (2) into Equation (1), we obtain the real and imaginary components
of the resultant expression

{
(a1ω2 + a2m2

1)Ψ
′′
(ξ)− 2a3Ψ3(ξ)− (a1τ2 + a2r2

1 + 2r2)Ψ(ξ) = 0,
(2a1τω + 2a2m1r1 + 2m2)Ψ

′
(ξ) = 0,

(3)

where Ψ
′
(ξ) �= 0.

From the second equation of Equation (3), we have

m2 = −(a1τω + a2m1r1). (4)

13
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In order to further analyze the dynamic behavior and soliton solutions of Equation (1),
under the conditions satisfied by Equation (3), we can transform the first equation of
Equation (3) into the following ordinary differential equation:

Ψ
′′ −ℑ1Ψ3 −ℑ2Ψ = 0, (5)

Here, ℑ1 = 2a3
a1ω2+a2m2

1
and ℑ2 =

a1τ2+a2r2
1+2r2

a1ω2+a2m2
1

, where a1ω2 + a2m2
1 �= 0.

2.3. Qualitative Analysis

The two-dimensional dynamic system of Equation (5) can be described as follows:

{
dΨ
dξ = u,
du
dξ = ℑ1Ψ3 +ℑ2Ψ,

(6)

with its first integral

H(Ψ, u) =
1
2

u2 − ℑ1

4
Ψ4 − ℑ2

2
Ψ2 = h. (7)

Let F(Ψj) = 0 ( j = 0, 1, 2) be the abscissa of the equilibrium point, where F(Ψj) =

ℑ1Ψ3
j +ℑ2Ψj. Assume that M(Ψj, 0) =

(
0 1

3ℑ1Ψ2
j +ℑ2 0

)
is the coefficient matrix of (6)

at the equilibrium point. Then, we obtain

det(M(Ψj, 0)) = −F′(Ψj), j = 0, 1, 2. (8)

If ℑ1ℑ2 > 0, system (6) has one equilibrium point (0, 0) (see Figure 1a,b). If ℑ1ℑ2 < 0,

the system (6) has three equilibrium points: (0, 0), (
√
−ℑ2

ℑ1
, 0), and (−

√
−ℑ2

ℑ1
, 0) (see

Figure 1c,d).

(a) ℑ1 > 0,ℑ2 > 0 (b) ℑ1 < 0,ℑ2 < 0

(c) ℑ1 < 0,ℑ2 > 0 (d) ℑ1 > 0,ℑ2 < 0

Figure 1. Two-dimensional phase portrait of system (7).
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2.4. Qualitative Analysis with Perturbation Term

In this section, we add the following small perturbation term to system (6):

{
dΨ
dξ = u,
du
dξ = ℑ1Ψ3 +ℑ2Ψ + f (ξ),

(9)

where f (ξ) = A sin(̟ξ) and f (ξ) = Ae−0.05ξ are the perturbed terms. A stands for the
amplitude of system (9). ̟ is the frequency of system (9).

By fixing the parameters ℑ1,ℑ2, A, ̟, we have drawn the two-dimensional, three-
dimensional, and Paincaré section diagrams of system (9), as shown in Figures 2–5. Specifi-
cally, when drawing two-dimensional and three-dimensional phase diagrams, we consider
the graphs under different initial values. In Figure 6, we plotted the branch phase diagram
of system (9) when ̟ takes different values. Obviously, it can be seen from Figure 6 that
when A reaches a critical point, the phase diagram of system (9) exhibits chaotic behavior.

(a) 2D phase portrait (b) 3D phase portrait (c) Paincaré section

Figure 2. The chaotic behaviors of system (9) with ℑ1 = 1,ℑ2 = −6, A = 1.2, ̟ = 1.

(a) 2D phase portrait (b) 3D phase portrait (c) Paincaré section

Figure 3. The chaotic behaviors of system (9) with ℑ1 = 1,ℑ2 = −6, A = 1.2.

(a) 2D phase portrait (b) 3D phase portrait (c) Paincaré section

Figure 4. The chaotic behaviors of system (9) with ℑ1 = −1,ℑ2 = 6, A = 6, ̟ = 1.
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(a) 2D phase portrait (b) 3D phase portrait (c) Paincaré section

Figure 5. The chaotic behaviors of system (9) with ℑ1 = −1,ℑ2 = 6, A = 1.2.

(a) ̟ = π
8 (b) ̟ = π

4 (c) ̟ = π
2

Figure 6. The bifurcation portraits of system (9) with ℑ1 = −1,ℑ2 = 1, r =
√

u2 + Ψ2.

3. Optical Soliton Solution of Equation (1)

Let be h0 = H(0, 0) = 0, h1 = H(±
√
−ℑ2

ℑ1
, 0) = ℑ2

2
4ℑ1

.

3.1. ℑ1 > 0, ℑ2 < 0, 0 < h <
ℑ2

2
4ℑ1

Then, system (7) becomes

u2 =
ℑ1

2
(Ψ4 +

2ℑ2

ℑ1
Ψ2 +

4h

ℑ1
) =

ℑ1

2
(̺2

1h − Ψ2)(̺2
2h − Ψ2), (10)

where ̺2
1h =

−ℑ2+
√

ℑ2
2−4ℑ1h

ℑ1
and ̺2

2h =
−ℑ2−

√
ℑ2

2−4ℑ1h
ℑ1

.

Substituting (10) into dΦ
dξ = u and integrating it, we can present the Jacobian function

solutions

ψ1(x, y, t) = ±̺1hsn(̺2h

√
ℑ1
2 (m1x + m2y + Γ(d+1)

α ωtα), ̺1h
̺2h

)ei(r1x+r2y+ Γ(d+1)
α τtα+δ). (11)

3.2. ℑ1 > 0, ℑ2 < 0, h =
ℑ2

2
4ℑ1

When ̺2
1h = ̺2

2h = −ℑ2
ℑ1

, we can obtain the soliton solution of (1)

ψ2(x, y, t) = ±
√
−ℑ2

ℑ1
tanh(

√
−ℑ2

2 (m1x + m2y + Γ(d+1)
α ωtα))ei(r1x+r2y+ Γ(d+1)

α τtα+δ). (12)

3.3. ℑ1 < 0, ℑ2 > 0, − ℑ2
2

4ℑ1
< h < 0

Then, system (7) becomes

u2 = −ℑ1

2
(−Ψ4 − 2ℑ2

ℑ1
Ψ2 − 4h

ℑ1
) = −ℑ1

2
(Ψ2 − ̺2

3h)(̺
2
4h − Ψ2), (13)

where ̺2
3h =

−ℑ2+
√

ℑ2
2−4ℑ1h

ℑ1
and ̺2

4h =
−ℑ2−

√
ℑ2

2−4ℑ1h
ℑ1

.
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Substituting (13) into dΦ
dξ = u and integrating it, we can present the Jacobian function

solutions

ψ3(x, y, t) = ±̺4hdn(̺4h

√
−ℑ1

2 (m1x + m2y + Γ(d+1)
α ωtα),

√
̺2

4h−̺2
3h

̺4h
)

ei(r1x+r2y+ Γ(d+1)
α τtα+δ).

(14)

3.4. ℑ1 < 0, ℑ2 > 0, h = 0

When ̺2
3h = 0, ̺2

4h == − 2ℑ2
ℑ1

, we can obtain the soliton solution of (1)

ψ4(x, y, t) = ±
√
− 2ℑ2

ℑ1
sech(

√ℑ2(m1x + m2y + Γ(d+1)
α ωtα))ei(r1x+r2y+ Γ(d+1)

α τtα+δ). (15)

3.5. ℑ1 < 0, ℑ2 > 0, h > 0

Then, system (7) becomes

u2 = −ℑ1

2
(−Ψ4 − 2ℑ2

ℑ1
Ψ2 − 4h

ℑ1
) = −ℑ1

2
(̺2

5h + Ψ2)(̺2
6h − Ψ2), (16)

where ̺2
5h =

ℑ2−
√

ℑ2
2−4ℑ1h

ℑ1
and ̺2

6h =
−ℑ2−

√
ℑ2

2−4ℑ1h
ℑ1

.

Substituting (16) into dΦ
dξ = u and integrating it, we can present the Jacobian function

solutions

ψ5(x, y, t) = ±̺6hcn(

√
−ℑ1(̺

2
5h+̺2

6h)
2 (m1x + m2y + Γ(d+1)

α ωtα), ̺6h√
̺2

5h+̺2
6h

)

ei(r1x+r2y+ Γ(d+1)
α τtα+δ).

(17)

3.6. Numerical Simulations

In this section, we plotted the solutions ψ1(x, y, t), including the three-dimensional
graph, two-dimensional graph, and counter graph, when a1 = 1, a2 = 1, ω = 1, m1 = 1,
m2 = 6, τ = −7, r1 = 1, r2 = − 3

2 , α = 1
2 , d = 1, h = 3

16 as shown in Figure 7. Obviously, the
solution ψ1(x, y, t) of Equation (1) is a periodic function solution. We plotted the solutions
ψ2(x, y, t), including the three-dimensional graph, two-dimensional graph, and counter
graph, when a1 = 1, a2 = 1, ω = 1, m1 = 1, m2 = 6, τ = −7, r1 = 1, r2 = 1, α = 1

2 , as
shown in Figure 8. Obviously, the solution ψ2(x, y, t) of Equation (1) is a kink-like soliton.
Moreover, we also plot solutions ψ3(x, y, t), ψ4(x, y, t), and ψ5(x, y, t) of Equation (1), as
shown in Figures 9–11.

(a) 3D graph (b) 2D graph (c) Contour graph

Figure 7. The solution ψ1(x, y, t) with a1 = 1, a2 = 1, a3 = 1, ω = 1, m1 = 1, m2 = 6, τ = −7, r1 = 1,
r2 = −25, α = 1

2 , d = 1, h = 3
16 .
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(a) 3D graph (b) 2D graph (c) Contour graph

Figure 8. The solution ψ2(x, y, t) with a1 = 1, a2 = 1, a3 = 1, ω = 1, m1 = 1, m2 = 6, τ = −7, r1 = 1,
r2 = 1, d = 1, α = 1

2 , h = 1
4 .

(a) 3D graph (b) 2D graph (c) Contour graph

Figure 9. The solution ψ3(x, y, t) with a1 = 1, a2 = 1, a3 = −1, ω = 1, m1 = 1, m2 = 6, τ = −7, r1 = 1,
r2 = −24, d = 1, α = 1

2 , h = − 3
16 .

(a) 3D graph (b) 2D graph (c) Contour graph

Figure 10. The solution ψ4(x, y, t) with a1 = 1, a2 = 1, a3 = −1, ω = 1, m1 = 1, m2 = 6, τ = −7, r1 = 1,
r2 = −24, d = 1, α = 1

2 , h = 0.

(a) 3D graph (b) 2D graph (c) Contour graph

Figure 11. The solution ψ5(x, y, t) with a1 = 1, a2 = 1, a3 = −1, ω = 1, m1 = 1, m2 = 6, τ = −7, r1 = 1,
r2 = − 49

2 , d = 1, α = 1
2 , h = 3

4 .

4. Conclusions

In this article, we use the theory of dynamical systems to study the dynamic behavior
and optical soliton for Equation (1) in a liquid crystal model. Furthermore, we used
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mathematical software to draw a planar phase diagram of a two-dimensional dynamical
system, and we can easily obtain the characteristics of some equilibrium points of the planar
dynamical system from the planar phase diagram. And by adding small perturbations,
the dynamic behavior of the two-dimensional system is analyzed. Based on different
initial values, we have drawn planar phase diagrams using red and blue colors in the
same coordinate system. From the perspective of plane dynamics theory, we have drawn
a bifurcation phase diagram and Poincaré sections of a disturbance system. And we
separately considered the dynamic behavior under periodic and small disturbances. In
future research, we will consider the dynamic behavior and optical soliton solutions of
more complex FPDEs.

Author Contributions: Software, Z.L.; writing—original draft preparation, J.L.; writing—review and
editing, Z.L. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Wu, J.; Yang, Z. Global existence and boundedness of chemotaxis-fluid equations to the coupled Solow-Swan model. AIMS Math.

2023, 8, 17914–17942. [CrossRef]
2. Wu, J.; Huang, Y.J. Boundedness of solutions for an attraction-repulsion model with indirect signal production. Mathematics 2024,

12, 1143. [CrossRef]
3. Tang, L. Dynamical behavior and multiple optical solitons for the fractional Ginzburg-Landau equation with β-derivative in

optical fibers. Opt. Quant. Electron. 2024, 56, 175. [CrossRef]
4. Wang, Y.; Qian, Z. Regularizing a two-dimensional time-fractional inverse heat conduction problem by a fractional Landweber

iteration method. Comput. Math. Appl. 2024, 164, 104–115. [CrossRef]
5. Jornet, M. On the Cauchy-Kovalevskaya theorem for Caputo fractional differential equations. Physica D 2024, 462, 134139.

[CrossRef]
6. Yu, J.C.; Feng, Y.Q. On the generalized time fractional reaction-diffusion equation: Lie symmetries, exact solutions and conserva-

tion laws. Chaos Solitons Fractals 2024, 182, 114855. [CrossRef]
7. Espinosa-Paredes, G.; Cruz-López, G.A. A new compartmental fractional neutron point kinetic equations with different fractional

orders. Nucl. Eng. Des. 2024, 423, 113184. [CrossRef]
8. Lu, Y.S.; Hu, Y.Z.; Qiao, Y.; Yuan, M.J.; Xu, W. Sparse least squares via fractional function group fractional function penalty for the

identification of nonlinear dynamical systems. Chaos. Soliton. Fract. 2024, 182, 114733. [CrossRef]
9. Liu, C.Y.; Li, Z. The dynamical behavior analysis and the traveling wave solutions of the stochastic Sasa-Satsuma Equation. Qual.

Theor. Dyn. Syst. 2024, 23, 157. [CrossRef]
10. Gu, M.S.; Chen Peng, C.; Li, Z. Traveling wave solution of (3+1)-dimensional negative-order KdV-Calogero-Bogoyavlenskii-Schiff

equation. AIMS Math. 2023, 9, 6699–6708. [CrossRef]
11. Mannaf, M.A.; Islam, M.E.; Bashar, H.; Basak, U.S.; Akbar, M.A. Dynamical behavior of optical self-control solion in a liquid

crystal model. Results Phys. 2024, 57, 107324. [CrossRef]
12. Usman, Y.; Abdulkadir, S.T.; Ren, J.L. Propagation of M-truncated optical pulses in nonlinear optics. Opt. Quant. Electron. 2023,

55, 102.
13. Rehman, H.U.; Awan, A.U.; Allahyani, S.A.; Tag-ElDin, E.M.; Binyamin, M.A.; Yasin, S. Exact solution of paraxial wave dynamical

model with kerr media by using φ6 model expansion technique. Results Phys. 2022, 42, 105975. [CrossRef]
14. Rehman, H.U.; Seadawy, A.R.; Younis, M.; Yasi, S.; Raza, S.T.R.; Althobaiti, S. Monochromatic optical beam propagation of

paraxial dynamical model in kerr media. Results Phys. 2021, 31, 105015. [CrossRef]
15. Roshid, M.M.; Uddin, M.; Mostafa, G. Dynamical structure of optical solution for M-fractional paraxial wave equation by using

unified technique. Results Phys. 2023, 51, 106632. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

19



Citation: Li, C.; Guo, L. Positive

Solutions and Their Existence of a

Nonlinear Hadamard Fractional

-Order Differential Equation with a

Singular Source Item Using Spectral

Analysis. Fractal Fract. 2024, 8, 377.

https://doi.org/10.3390/

fractalfract8070377

Academic Editor: Riccardo Caponetto

Received: 27 May 2024

Revised: 23 June 2024

Accepted: 25 June 2024

Published: 26 June 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

fractal and fractional

Article

Positive Solutions and Their Existence of a Nonlinear
Hadamard Fractional-Order Differential Equation with a
Singular Source Item Using Spectral Analysis

Cheng Li 1 and Limin Guo 2,*

1 School of Automotive Engineering, Changzhou Institute of Technology, Changzhou 213032, China;
licheng@czu.cn

2 School of Science, Changzhou Institute of Technology, Changzhou 213032, China
* Correspondence: guolm@czu.cn

Abstract: Based on the spectral analysis method, Gelfand’s formula, and the cones fixed point theo-

rem, some positive solutions with their existence of a nonlinear infinite-point Hadamard fractional-

order differential equation is achieved on the interval [a, b] under some conditions, and particularly

the nonlinear term allows singularities for time and spatial parameters in the present study. Finally,

an analysis case is carried out to reveal the principal results.

Keywords: hadamard; fractional-order differential; positive solution; infinite-point; specral analysis

MSC: 70K50; 34B18

1. Introduction

The fractional-order differential model can exactly depict the physical and mechanical
process containing historical memories and thus establish spatial global relationship briefly.
Accordingly, the fractional-order differential model is concise in form and the parameter
meaning is obvious, so it becomes one of the effective approaches for modeling complex
mechanical and physical behaviors. Boulham et al. [1] proposed an adaptive monitor for
projective chaotic synchronization of general class fractional-order systems with chaotic
uncertainty affected by unknown input nonlinear factors, and the closed-loop stability was
strictly verified by two simulation examples and related comparative studies. Wu et al. [2]
used a new nonlinear fractional-order damaged pattern with viscosity, elasticity and plastic-
ity for rock and soil materials to characterize three-stage creep behaviors, and their pattern
fully calculated and predicted the deformation with hysteresis derived from the rapid creep
in tunnel engineering. Ma et al. [3] developed a fractional-order model termed as SEIR type
and subsequently the beingness, uniqueness, boundness of such a fractional-order system
were determined. The research conclusions indicated that it is difficult for humans to avoid
coexistence with the spread of the COVID-19 epidemic. Yang et al. [4] designed a fractional
controller of EV hybrid energy storage system that can significantly improve the control
performance with good robustness. In addition, fractional-order models have been found
to be extensively applied in photovoltaic panels [5], electromagnetic waves [6], electric
circuits [7], viscoelastic materials [8], chemical reactions [9] and biological systems [10,11].

Owing to its so many advantages and fine results while simulating the system, the
fractional-order differential model has received increasingly research attentions during the
past several years. How to get the existence result of positive solution for the fractional-
order differential model as well as its related nonlinear dynamics becomes a hot research
direction in the field of fractional-order differential models, and many meaningful results
are achieved in recent years [12–17]. Xu et al. [18] depicted the positive solutions of a kind
of fractional-order differential models as follows
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H Dα
a+x(t) + h̄(t, x(t)) = 0, t ∈ (a, b),

with the boundary value condition

x(a) = x′(a) = 0, x(b) =
∫ b

a
χ(t)x(t)

dt

t
,

where α, a, b are real positive mumbers, 2 < α < 3, a < b < +∞, H Dα
a+

is the Hadamard frac-

tional derivative of order α, χ : [a, b] → R+ with χ(t) �≡ 0, t ∈ [a, b], and
∫ b

a χ(t)(ln t
a )

α−1 dt
t ∈

[0, (ln b
a )

α−1), h̄ ∈ C([a, b]×R+,R+). Arul and Karthikeyan [19] discussed the existence
and uniqueness of solutions with some integral boundary conditions of implicit Hadamard
differential equation

−H Dκ
a+v(t) = g(t, v(t),H Dκ

a+v(t)), a < t < b,

with boundary value condition

v(a) = 0, v(b) = ς
∫ σ

0
v(s)ds, a < σ < b, ς ∈ R,

where H Dκ
a+

v is the standard Hadamard fractional derivative of order 1 < κ ≤ 2, Arul
and Karthikeyan [19] investigated the existence and uniqueness based on Banach and
Schauder’s fixed point theorem. Wang et al. [20] studied a fractional-order iterative func-
tional differential equation containing parameter on the interval [a, b], showed as

cDα
a+u(t) = f (t, u(t), u(uν(t))) + m, t ∈ [a, b], ν ∈ R\{0}, q ∈ (0, 1), λ ∈ R,

with boundary conditions

u(t) = ϕ(t), t ∈ [a1, a], u(t) = ψ(t), t ∈ [b, b1],

where cD
q
a is the Caputo fractional derivative of order q with the oower limit a, a1 ≤

a < b ≤ b1, a1 ≤ av
1, bv

1 ≤ b1, f ∈ C([a, b] × [a1, b1]
2, R), ϕ ∈ C([a1, a], [a1, b1]) and

ψ ∈ C([b, b1], [a1, b1]). The existence theorem is established by the method of Schauder’s
fixed point theorems [20], and Wang et al. [20] obtained data dependence of solutions and
related parameters.

In this article, an infinite-point Hadamard fractional-order differential equation is
taken into account, shown as

−H D♭
a+V (t) + ̺(t)ℓ

(
t, V (t),H D

μ
a+

V (t)
)
= 0, a < t < b, (1.1)

with boundary value conditions

H D
μ
a+

V (a) =H D
μ+1
a+

V (a) = 0,H D
μ
a+

V (b) =
∞

∑
j=1

κH
j D

μ
a+

V (ς j), (1.2)

where 2.5 < ♭ ≤ 3, κj ≥ 0, 0 < μ < 1
2 , 1 < ς1 < ς2 < · · · < ς j−1 < ς j < · · · < e(j =

1, 2 · · · ), ∑
∞
j=1 κj

(
ln ς j−ln s

ln b−ln s

)♭−1
< 1 and ∑

∞
j=1 κj(ln

ς j

a )
♭−1 < (ln b

a )
♭−1, ̺(t) is singular at

t = a or/and t = b, ℓ : [a, b]×R×R → R is a given function and ℓ(t, x, y) is continuous,
and H D♭

1+ is the standard Hadamard derivative.
Compared with [18,21], the present study contains the the derivative term in the

nonlinear term of the equation and we will deal with this difficulty, moreover, and involved
infinite points in the boundary conditions. Compared with [19], the nonlinear term is
singular in this article, and the method we used is spectral analysis and infinite-points are
contained in the boundary conditions. Compared with [22,23], the interval we discussed
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is arbitrarily closed interval [a, b], the interval [1, T] or [0, 1] in [22,23] are special cases of
interval [a, b], considering the solution of the equation on this interval will bring about a
series of problems, and we overcome this difficulty.

2. Preliminaries And Lemmas

Some important definitions and lemmas which may be adopted during the certification
in the present study, could be reviewed in the newly published papers, e.g., see [24,25], we
introduce some of them herein.

Definition 1 ([24,25]). Let a > 0, then the Hadamard-type fractional left integral of order β > 0
of a function h : [a, ∞) → R is defined by

H I
β
a+

h(t) =
1

Γ(β)

∫ t

a
(ln

t

ς
)β−1h(ς)

dς

ς
, t ≥ a.

Definition 2 ([24,25]). Let a > 0, h : [a, ∞) → R, tn−1h(n−1)(t) ∈ AC[a, ∞), n ∈ N,
β ∈ (n − 1, n), then the Hadamard fractional left derivative of from [a,+∞) is defined by

H D
β
a+

h(t) =
1

Γ(n − β)
(t

d

dt
)n
∫ t

a
(ln

t

ς
)n−β−1h(ς)

dς

ς
, t > a.

Lemma 1 ([24,25]). For β ∈ (n − 1, n), n ∈ N, h ∈ L[a, ∞), a > 0, the fractional equation
H D

β
a+

h(t) + ω(t) = 0, t > a has expression of solution

x(t) =
n

∑
i=1

χi(ln
t

a
)β−i − 1

Γ(β)

∫ t

a
(ln

t

ς
)β−1ω(ς)

dς

ς
, t ≥ a,

where χi ∈ R, k = 1, 2, . . . , n.

Let U (t) =H D
μ
a+

V (t), V (t) ∈ C[a, b], then the BVP (1.1,1.2) can be reduced to a
modified model

−H D
♭−μ
a+

U (t) + ̺(t)ℓ
(

t,H I
μ
a+

U (t), U (t)
)
= 0, a < t < b, (2.1)

with boundary value condition

U (a) = U
′(a) = 0, U (b) =

∞

∑
j=1

κjU (ς j). (2.2)

Lemma 2. Given A ∈ L1(a, b), then the model

H D
♭−μ
1+ U (t) +A (t) = 0, a < t < b, (2.3)

with boundary value condition (2.2) can be expressed by

U (t) =
∫ b

a
H (t, s)A (s)

ds

s
, t ∈ [a, b], (2.4)

where

H (t, s) = G (t, s) +
(ln t

a )
♭−μ−1

∆

∞

∑
j=1

κjG (ς j, s),

G (t, s) =
1

(ln b
a )

♭−μ−1Γ(♭− μ)

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

(ln t − ln a)♭−μ−1(ln b − ln s)♭−μ−1

− (ln t − ln s))♭−μ−1(ln
b

a
)♭−μ−1, a ≤ s ≤ t ≤ b,

(ln t − ln a)♭−μ−1(ln b − ln s)♭−μ−1, a ≤ t ≤ s ≤ b,

(2.5)
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in which ∆ = (ln b
a )

♭−μ−1 − ∑
∞
j=1 κj(ln

ς j

a )
♭−μ−1.

Proof. By Lemma 1, Formula (2.3) is changed into an equivalent integral equation

U (t) = −H I
♭−μ
a+

A (t) + d1(ln
t

a
)♭−μ−1 + d2(ln

t

a
)♭−μ−2 + d3(ln

t

a
)♭−μ−3.

From u(a) = 0, we have d3 = 0, then

U
′(t) = −H I

♭−μ−1
a+

A (t) + d1(♭− μ − 1)(ln
t

a
)♭−μ−2 · a

t
+ d2(♭− μ − 2)(ln

t

a
)♭−μ−3 a

t
,

by U ′(a) = 0, we have d2 = 0. Hence, we get

U (t) =d1(ln
t

a
)♭−μ−1 −H I

♭−μ
a+

A (t)

=− 1
Γ(♭− μ)

∫ t

a
(ln t − ln s)♭−μ−1

A (s)
ds

s
+ d1(ln

t

a
)♭−μ−1,

therefore, U (ξ j) = − 1
Γ(♭− μ)

∫ ς j

a
(ln ξ j − ln s)♭−μ−1

A (s)
ds

s
+ d1(ln

ς j

a
)♭−μ−1. Moreover,

by U (b) = ∑
∞
j=1 κjU (ς j), we have

U (b) =− 1
Γ(♭− μ)

∫ b

a
(ln b − ln s)♭−μ−1

A (s)
ds

s
+ d1(ln

b

a
)♭−μ−1

=
∞

∑
j=1

κj

(
− 1

Γ(♭− μ)

∫ ς j

a
(ln ς j − ln s)♭−μ−1

A (s)
ds

s
+ d1(ln

ς j

a
)♭−μ−1

)
.

Then, we get

d1

(
(ln

b

a
)♭−μ−1 −

∞

∑
j=1

κj(ln
ς j

a
)♭−μ−1

)
=

1
Γ(♭− μ)

∫ b

a
(ln b − ln s)♭−μ−1

A (s)
ds

s

− 1
Γ(♭− μ)

∞

∑
j=1

κj

∫ ς j

a
(ln ς j − ln s)♭−μ−1

A (s)
ds

s
,

thus, we have

d1 =
1

Γ(♭− μ)∆

∫ b

a
(ln b − ln s)♭−μ−1

A (s)
ds

s
− 1

Γ(♭− μ)∆

∞

∑
j=1

κj

∫ ς j

a
(ln ς j − ln s)♭−μ−1

A (s)
ds

s
,

hence,
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U (t) =
(ln t

a )
♭−μ−1

Γ(♭− μ)∆

∫ b

a
(ln b − ln s)♭−μ−1

A (s)
ds

s
− (ln t

a )
♭−μ−1

Γ(♭− μ)∆

∞

∑
j=1

κj

∫ ς j

a
(ln ς j − ln s)♭−μ−1

A (s)
ds

s

−H I
♭−μ
a+

A (t)

=
(ln t

a )
♭−μ−1

Γ(♭− μ)∆

∫ b

a
(ln b − ln s)♭−μ−1

A (s)
ds

s
− (ln t

a )
♭−μ−1

Γ(♭− μ)∆

∞

∑
j=1

κj

∫ ς j

a
(ln ς j − ln s)♭−μ−1

A (s)
ds

s

− 1
Γ(♭− μ)

∫ t

a
(ln t − ln s)♭−μ−1

A (s)
ds

s

+
1

Γ(♭− μ)(ln b
a )

♭−μ−1

∫ b

a
(ln

t

a
)♭−μ−1(ln

b

s
)♭−μ−1

A (s)
ds

s

− 1

Γ(♭− μ)(ln b
a )

♭−μ−1

∫ b

a
(ln

t

a
)♭−μ−1(ln

b

s
)♭−μ−1

A (s)
ds

s

=
∫ b

a
G (t, s)A (s)

ds

s
+

1
Γ(♭− μ)∆

∫ b

a
(ln

t

a
)♭−μ−1(ln b − ln s)♭−μ−1

A (s)
ds

s

− 1

Γ(♭− μ)(ln b
a )

♭−μ−1

∫ b

a
(ln

t

a
)♭−μ−1(ln

b

s
)♭−μ−1

A (s)
ds

s

− (ln t
a )

♭−μ−1

Γ(♭− μ)∆

∞

∑
j=1

κj

∫ ς j

a
(ln ς j − ln s)♭−μ−1

A (s)
ds

s

=
∫ b

a
G (t, s)A (s)

ds

s
+

(ln b
a )

♭−μ−1 − ∆

∆Γ(♭− μ)(ln b
a )

♭−μ−1

∫ b

a
(ln

t

a
)♭−μ−1(ln

b

s
)♭−μ−1

A (s)
ds

s

− (ln t
a )

♭−μ−1

Γ(♭− μ)∆

∞

∑
j=1

κj

∫ ς j

a
(ln ς j − ln s)♭−μ−1

A (s)
ds

s

=
∫ b

a
G (t, s)A (s)

ds

s

+
(ln t

a )
♭−μ−1

∆

(
1

Γ(♭− μ)(ln b
a )

♭−μ−1

∞

∑
j=1

κj

∫ b

a
(ln

ς j

a
)♭−μ−1(ln

b

s
)♭−μ−1

A (s)
ds

s

− 1
Γ(♭− μ)

∞

∑
j=1

κj

∫ ς j

a
(ln ς j − ln s)♭−μ−1

A (s)
ds

s

)

=
∫ b

a
G (t, s)A (s)

ds

s

+
(ln t

a )
♭−μ−1

∆

∞

∑
j=1

κj

(
1

Γ(♭− μ)(ln b
a )

♭−μ−1

∫ b

a
(ln

ς j

a
)♭−μ−1(ln

b

s
)♭−μ−1

A (s)
ds

s

− 1
Γ(♭− μ)

∫ ς j

a
(ln ς j − ln s)♭−μ−1

A (s)
ds

s

)

=
∫ b

a
H (t, s)A (s)

ds

s
.

Therefore, the expression (2.4) is ritht.

Lemma 3. The properties of the Green function (2.4) are as follows:

(i) H (t, s) ≤ ̟(s)

Γ(♭−μ)(ln b
a )

w;

(ii) H (t, s) ≥ ϑ(t)̟(s)

Γ(♭−μ)(ln b
a )

♭−μ+1 ,
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where

ϑ(t) = (ln
t

a
)♭−μ−1(ln

b

t
), ̟(t) = (ln

t

a
)(ln

b

t
)♭−μ−1, w = 1 +

(ln b
a )

♭−μ−1

∆

∞

∑
j=1

κj. (2.6)

Proof. From Lemma 5 of [26], we get

G (t, s) ≤ ̟(s)

Γ(♭− μ)(ln b
a )

, G (t, s) ≥ ϑ(t)̟(s)

Γ(♭− μ)(ln b
a )

♭−μ+1
, (2.7)

where ϑ(t), ̟(t) is as Lemma 3, G (t, s) is from (2.5). By (2.7), we get

H (t, s) =G (t, s) +
(ln t

a )
♭−μ−1

∆

∞

∑
j=1

κjG (ξ j, s)

≤ ̟(s)

Γ(♭− μ)(ln b
a )

+
(ln b

a )
♭−μ−1

∆

∞

∑
j=1

κj
̟(s)

Γ(♭− μ)(ln b
a )

≤ ̟(s)

Γ(♭− μ)(ln b
a )

(
1 +

(ln b
a )

♭−μ−1

∆

∞

∑
j=1

κj

)

=
̟(s)

Γ(♭− μ)(ln b
a )

w.

On the other hand, we can calculate that

H (t, s) ≥ G (t, s) ≥ ϑ(t)̟(s)

Γ(♭− μ)(ln b
a )

♭−μ+1
,

then we have (ii) of Lemma 3. As a consequent, we complete the the proof of Lemma 3.

Let E = C[a, b], ‖U ‖ = maxa≤t≤b |U (t)|, then (E , ‖.‖) is a Banach space. In this
paper,

P = {u ∈ E : U (t) ≥ 0, t ∈ [a, b]},

K =

{
U ∈ P : U (t) ≥ ϑ(t)

(ln b
a )

♭−μw
‖U ‖, t ∈ [a, b]

}
,

where w = 1 +
(ln b

a )
♭−μ−1

∆ ∑
∞
j=1 κj. Apparently, K is a subcone of P, and (E , K ) has an

ordering relation. Let Kr = {U ∈ K : ‖U ‖ < r}, ∂Kr = {U ∈ K : ‖U ‖ = r} and
K r = {U ∈ K : ‖U ‖ ≤ r}.

Now the following conditions is listed which will be used later.
(A1) ̺ : (a, b) → R1

+ is nonnegative, ̺(t) �≡ 0 and ̺(t)may be singular at t = a,
t = b, and ∫ b

a
̟(s)̺(s)

ds

s
< +∞.

(A2) ℓ : [a, b]× (0,+∞)× (0,+∞) → R1
+ is continuous, and for any 0 < ι < j < +∞,

lim sup
m→+∞

{
sup

∫

e(m)
̟(s)̺(s)ℓ(s, x1(s), x2(s))

ds

s

∣∣∣,

x1 ∈ K j \Kι, x2 ∈ K j \Kι

}
= 0,

where e(m) = [0, 1
m ] ∪ [m−1

m , 1], j = 1
Γ(μ+1) (ln

b
a )

μ j.
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Nonlinear operator A : K \ {0} → P and linear operator T : E → E are defined,
shown as

(AU )(t) =
∫ b

a
H (t, s)̺(s)ℓ

(
s,H I

μ
a+

U (s), U (s)
)ds

s
, t ∈ [a, b], (2.8)

(T U )(t) =
∫ b

a
H (t, s)̺(s)U (s)

ds

s
, t ∈ [a, b]. (2.9)

Lemma 4 ([27]). Assume T : E → E , and T be a linear operator and is continuous, T (K ) ⊂ K ,
where K is a total cone. If there exist a positive constant d and ζ ∈ E \ (−K ) that makes dT (ζ) ≥
ζ, then the spectral radius of T be greater than 0, and which has a positive eigenfunction in regard
to its the first eigenvalue λ = r(T )−1. This formula is often called Krein-Rutmann’s theorem.

Lemma 5 ([27]). The spectral radius of T meets

r(T ) = lim
n→+∞

‖T n‖ 1
n ,

where T is a linear bounded operator, and ‖.‖ is the norm of operator. This formula is often called
Gelfand’s formula.

Lemma 6. T : K → K defined by (2.9) is a linear operator with complete continuity under
the condition (A1), and the spectral radius r(T ) of T is unequal zero, furthermore, T exists a
positive eigenfunction ζ in regard to its first eigenvalue λ1 = (r(T ))−1.

Proof. For ∀ U ∈ K , from Lemma 3, one arrives

‖T U ‖ = max
t∈[a,b]

∫ b

a
H (t, s)̺(s)U (s)

ds

s

≤ 1

Γ(♭− μ)(ln b
a )

(
1 +

(ln b
a )

♭−μ−1

∆

∞

∑
j=1

κj

) ∫ b

a
̟(s)̺(s)U (s)

ds

s

≤ w

Γ(♭− μ)(ln b
a )

∫ b

a
̟(s)̺(s)U (s)

ds

s

(2.10)

Moreover, by Lemma 3, the following result can be derived

T U (t) ≥ ϑ(t)

Γ(♭− μ)(ln b
a )

♭−μ+1

∫ b

a
̟(s)̺(s)U (s)

ds

s
, t ∈ [a, b]. (2.11)

Formula (2.10) and Formula (2.11) mean T from K to K . One finds that T has com-
pletely continuous property from K to K by combing (A2) and the uniform continuous
property of H (t, s) on [a, b]× [a, b].

Next, based on Krein-Rutmann’s theorem, we prove that T has the first eigenvalue
λ1 and λ1 > 0. In reality, by process of proof Lemma 3, there exists t0 ∈ (a, b) that makes
H (t0, t0) > 0. Therefore, there exists [m, n] ⊂ (a, b) that makes t0 ∈ (m, n) and H (t, s) > 0
for ∀ t, s ∈ [m, n]. Select U ∈ K that makes U (t0) > 0 and U (t) = 0 for all t �∈ [m, n]. After
that, for ∀ t ∈ [m, n], we have

(T U )(t) =
∫ b

a
H (t, s)̺(s)U (s)

ds

s
≥
∫ n

m
H (t, s)̺(s)U (s)

ds

s
> 0.
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Hence, there is d > 0 such that d(T U )(t) ≥ U (t) for t ∈ [a, b], then the spectral
radius r(T ) �= 0 according to Lemma 4, furthermore, by Lemma 6, for the given first
eigenvalue λ1 = (r(T ))−1, there exists a positive eigenfunction ϕ⋆ for A that makes

λ1T ϕ⋆ = ϕ⋆.

The proof is over.

Lemma 7. In case of (A1), (A2) hold, then A acts as an operator with complete continuity from
K j \Kι to K .

Proof. First of all, we show A(K j \Kr) ⊂ K . Actually, for ∀ u ∈ K j \Kι, t ∈ [a, b], and
combing Lemma 3, one has

(AU )(t) =
∫ b

a
H (t, s)̺(s)ℓ

(
s,H I

μ
a+

U (s), U (s)
)ds

s

≤ w

Γ(♭− μ)(ln b
a )

∫ b

a
̟(s)̺(s)ℓ

(
s,H I

μ
a+

U (s), U (s)
)ds

s
,

Then

‖(AU )‖ ≤ w

Γ(♭− μ)(ln b
a )

∫ b

a
̟(s)̺(s)ℓ

(
s,H I

μ
a+

u(s), u(s)
)ds

s
.

On the other side, the following result is obtained from Lemma 3

(AU )(t) =
∫ b

a
H (t, s)̺(s)ℓ

(
s,H I

μ
a+

U (s), U (s)
)ds

s

≥ ϑ(t)

Γ(♭− μ)(ln b
a )

♭−μ+1

∫ b

a
̟(s)̺(s)ℓ

(
s,H I

μ
a+

U (s), U (s)
)ds

s

≥ ϑ(t)

(ln b
a )

♭−μw
‖AU ‖, t ∈ [a, b].

Consequently, A(K j \Kι) ⊂ K . Next, for ∀ ι > 0, we prove

sup
U ∈K j\Kι

∫ b

a
̟(s)̺(s)ℓ

(
s,H I

μ
a+

U (s), U (s)
)ds

s
< +∞, (2.12)

that is to say, A : K j \ Kι → K is well defined. As a matter of fact, for ∀U ∈ K j \ Kι,
we have

H I
μ
a+

U (t) =
1

Γ(μ)

∫ t

a
(ln t − ln s)μ−1

U (s)
ds

s

≤− 1
Γ(μ)

‖U ‖
∫ t

a
(ln t − ln s)μ−1d(ln t − ln s)

=
1

Γ(μ + 1)
‖U ‖(ln t − ln s)μ|ta =

1
Γ(μ + 1)

(ln
b

a
)μ‖U ‖

≤ 1
Γ(μ + 1)

(ln
b

a
)μ j, t ∈ [a, b],

(2.13)
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Then ‖H I
μ
a+

U ‖ ≤ 1
Γ(μ+1) (ln

b
a )

μ j, hence, by (A2), there must be a non-negative integer
v0 > 1 such that

sup
U ∈K j\Kι

∫

e(v0)
w(s)̺(s)ℓ(s,H I

μ
a+

U (s), U (s))
ds

s
<

Γ(♭− μ)(ln b
a )

w
. (2.14)

where

w = 1 +
(ln b

a )
♭−μ−1

∆

∞

∑
j=1

κj.

Choosing

̺ = min

{
1

(ln b
a )

♭−μ−1w
,
(ln a)♭−μ(−1)♭−μ−1

Γ(μ)γ(ln b
a )

♭−μw
, 1

}
,

̺ = max

{
1,

(ln b
a )

μ

Γ(μ + 1)

}
.

Hence, for ∀ U ∈ K j \Kι, we get

u(t) ≤ ‖U ‖ ≤ j ≤ ̺j, (2.15)

U (t) ≥ ϑ(t)‖U ‖
(ln b

a )
♭−μw

=
(ln t

a )
♭−μ−1(ln b

t )‖U ‖
(ln b

a )
♭−μw

≥ (ln t)♭−μ−1

(ln b
a )

♭−μ−1w
‖U ‖ ≥ (ln t)♭−μ−1̺‖U ‖,

(2.16)

by (2.13), we have

H I
μ
a+

U (t) ≤ 1
Γ(μ + 1)

(ln
b

a
)μ‖U ‖ ≤ ̺‖U ‖, t ∈ [a, b], (2.17)

H I
μ
a+

U (t) =
1

Γ(μ)

∫ t

a
(ln t − ln s)μ−1

U (s)
ds

s

≥ 1
Γ(μ)

∫ t

a
(ln t − ln s)μ−1 (ln

s
a )

♭−μ−1(ln b
s )

(ln b
a )

♭−μw
‖U ‖ds

s

=
‖U ‖

Γ(μ)(ln b
a )

♭−μw

∫ t

a
(ln t − ln s)μ−1(ln s − ln a)♭−μ−1(ln b − ln s)d(ln s),

t ∈ [a, b].

(2.18)
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If ln s = Λ ln t, one gets

‖U ‖
Γ(μ)(ln b

a )
♭−μw

∫ t

a
(ln t − ln s)μ−1(ln s − ln a)♭−μ−1(ln b − ln s)d(ln s)

=
‖U ‖

Γ(μ)(ln b
a )

♭−μw

∫ 1

ln a
ln t

(ln t − Λ ln t)μ−1(ι ln t − ln a)♭−μ−1(ln b − ι ln t)dτ

=
‖U ‖

Γ(μ)(ln b
a )

♭−μw
(ln t)μ−1

∫ 1

ln a
ln t

(1 − Λ)μ−1(ι ln t − ln a)♭−μ−1(ln b − ι ln t)dτ

≥ ‖U ‖
Γ(μ)(ln b

a )
♭−μw

(ln t)μ−1
∫ 1

0
(1 − Λ)μ−1(Λ ln b − ln a)♭−μ−1(ln b − Λ ln a)dτ

≥ ‖U ‖(ln a)♭−μ−1

Γ(μ)(ln b
a )

♭−μw
(ln t)μ−1

∫ 1

0
(1 − Λ)μ−1(Λ − 1)♭−μ−1 ln a(1 − Λ)dτ

=
‖U ‖(ln a)♭−μ

Γ(μ)(ln b
a )

♭−μw
(ln t)μ−1

∫ 1

0
(1 − Λ)μ−1(Λ − 1)♭−μ−1dτ

=
‖U ‖(ln a)♭−μ

Γ(μ)(ln b
a )

♭−μw
(ln t)μ−1(−1)♭−μ−1

∫ 1

0
(1 − Λ)♭−1

=
‖U ‖(ln a)♭−μ

γΓ(μ)(ln b
a )

♭−μw
(ln t)μ−1(−1)♭−μ−1

≥ ‖U ‖(ln t)μ−1̺ ≥ ‖u‖(ln t)♭−μ−1̺, t ∈ [a, b].

(2.19)

Thus, for ∀ a + 1
υ0

≤ t ≤ b − 1
υ0

, by (2.15)–(2.19), we obtain

r̺(ln(a +
1
υ0

))♭−μ−1 ≤ U (t),H I
μ
a+

U (t) ≤ ̺j. (2.20)

Combing (2.14) and (2.20), we get

sup
U ∈K j\Kι

∫ b

a

w

Γ(♭− μ)(ln b
a )

̟(s)̺(s)ℓ
(

s,H I
μ
a+

U (s), U (s)
)ds

s

≤ sup
U ∈K j\Kι

∫

e(υ0)

w

Γ(♭− μ)(ln b
a )

̟(s)̺(s)ℓ
(

s,H I
μ
a+

U (s), U (s)
)ds

s

+ sup
U ∈K j\Kι

∫ b− 1
υ0

a+ 1
υ0

w

Γ(♭− μ)(ln b
a )

̟(s)̺(s)ℓ
(

s,H I
μ
a+

U (s), U (s)
)ds

s

≤ 1 + D1

∫ b

a

w

Γ(♭− μ)(ln b
a )

̟(s)̺(s)
ds

s
< +∞,

(2.21)

where

w = 1 +
(ln b

a )
♭−μ−1

∆

∞

∑
j=1

κj,

D1 = max

{
ℓ(t, ς1, ς2) : (t, ς1, ς2) ∈

(
1
υ0

, 1 − 1
υ0

)
×
(

ι̺(ln(a +
1
υ0

))♭−μ−1, ̺j

)2
}

.

Thus, (2.12) is valid and indicating that A has the uniformly bounded property on any
bounded set.

For ∀ ǫ > 0, by (A2), there must be a non-negative integer υ0 > 1 that makes

sup
x1∈K j\Kι ,x2∈K j\Kι

∫

e(υ0)
w(s)̺(s)ℓ(s, x1(s), x2(s))

ds

s
<

εΓ(♭− μ)(ln b
a )

4w
. (2.22)
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Then, we show that A is continuous from K j \Kι to K . Let Uk, U0 ∈ K j \Kι and
‖Uk −U0‖ → 0 (k → ∞). On account of ℓ(t, x1, x2) has uniformly continuous property on

(
a +

1
υ0

, b − 1
υ0

)
×
(

r̺(ln(a +
1
υ0

))♭−μ−1, ̺R

)2

,

we have
lim

k→+∞

∣∣∣ℓ
(

s,H I
μ
a+

Uk(s), Uk(s)
)
− ℓ

(
s,H I

μ
a+

U0(s), U0(s)
)∣∣∣ = 0

Uniformly holds for t ∈
[

a + 1
υ0

, b − 1
υ0

]
. Then, by Lebesgue control convergence

theorem and (A2), we have

∫ b− 1
υ0

a+ 1
υ0

w(s)̺(s)
∣∣∣ℓ
(

s,H I
μ
a+

Uk(s), Uk(s)
)
− ℓ

(
s,H I

μ
a+

U0(s), U0(s)
)∣∣∣ds

s
→ 0, as k → ∞.

Thus, for the ǫ shown as in (2.18), there is a natural number N, for k > N, that makes

∫ b− 1
υ0

a+ 1
υ0

w(s)̺(s)
∣∣∣ℓ
(

s,H I
μ
a+

Uk(s), Uk(s)
)
− ℓ

(
s,H I

μ
a+

U0(s), U0(s)
)∣∣∣ds

s

<
εΓ(♭− μ)(ln b

a )

2w
.

(2.23)

For k > N, by (2.22) and (2.23), one has

‖AUk − AU0‖

≤ sup
Uk∈K j\Kι

∫

e(υ0)

w

Γ(♭− μ)(ln b
a )

̟(s)̺(s)ℓ
(

s,H I
μ
a+

Uk(s), Uk(s)
)ds

s

+ sup
Uk∈K j\Kι

∫

e(υ0)

w

Γ(♭− μ)(ln b
a )

̟(s)̺(s)ℓ
(

s,H I
μ
a+

Uk(s), Uk(s)
)ds

s

+
∫ b− 1

υ0

a+ 1
υ0

w

Γ(♭− μ)(ln b
a )

w(s)̺(s)
∣∣∣ℓ
(

s,H I
μ
a+

Uk(s), Uk(s)
)ds

s

− ℓ

(
s,H I

μ
a+

U0(s), U0(s)
)ds

s

∣∣∣ds

s

<2(
w

Γ(♭− μ)(ln b
a )
)× ε

4( w
Γ(♭−μ)(ln b

a )
)
+ (

w

Γ(♭− μ)(ln b
a )
)

ε

2( w
Γ(♭−μ)(ln b

a )
)
= ε.

Thus, A is continuous from K j \Kι to K.
For ∀ bounded set Ω and Ω ⊂ K j \Kι, we show that A(Ω) is equicontinuous. As a

matter of fact, by (A2), for ∀ ǫ > 0, there is a natural number κ0 > 1 so that

sup
x2∈K j\Kι

∫

e(κ0)
w(s)̺(s)ℓ(s, x1(s), x2(s))

ds

s
<

ε

4
(

w
Γ(♭−μ)(ln b

a )

) .

Taking

D2 = max

{
ℓ(t, x1, x2) : (t, x1, x2) ∈

(
a +

1
κ0

, b − 1
κ0

)
×
(

r̺(ln(a +
1
n0

))♭−μ−1, ̺j

)2
}

.
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On account of H (t, s) is uniformly continuous on [a, b] × [a, b], for the ǫ which is
defined by above, there is δ > 0, for ∀ s ∈ [a + 1

κ0
, b − 1

κ0
], we have

|H (t, s)−H (t′, s)| ≤ ε

2

(
D2

∫ b− 1
κ0

a+ 1
κ0

̺(s)
ds

s

)−1

,

for |t − t′| < δ, t, t′ ∈ [a, b]. Thus, for ∀ |t − t′| < δ, t, t′ ∈ [a, b] and U ∈ Ω, we obtain

‖AU (t)− AU (t′)‖

≤ 2 sup
U ∈K j\Kι

(
w

Γ(♭− μ)(ln b
a )

) ∫

e(κ0)
w(s)̺(s)ℓ

(
s,H I

μ
a+

U (s), U (s)
)ds

s

+ sup
U ∈K j\Kι

∫ b− 1
κ0

a+ 1
κ0

|H (t, s)−H (t′, s)|̺(s)ℓ
(

s,H I
μ
a+

U (s), U (s)
)ds

s

< 2

(
w

Γ(♭− μ)(ln b
a )

)
× ε

4( w
Γ(♭−μ)(ln b

a )
)
+

ε

2
= ε,

which demonstrates that A(Ω) is equicontinuous. By the Arzela-Ascoli theorem, A is fully
continuous from K j \Kι to K , then the verification is finished.

3. Principal Results

In this section, the main results will be provided according to these preliminaries and
the following lemmas.

Lemma 8 ([27]). Suppose K is a cone within Banach space E . Let A : K r → K is a fully
continuous operator. In case of U0 ∈ K \{θ} so that U − AU �= μU0 for an arbitrary U ∈ ∂Kr

and μ ≥ 0, thus i(A, Kr, K ) = 0.

Lemma 9 ([27]). Suppose K is a cone within Banach space E. Let A : K r → K is a fully contin-
uous operator. In case of Au �= μU for an arbitrary U ∈ ∂Kr and μ ≥ 1, thus i(A, Kr, K ) = 1.

Theorem 1. Suppose the conditions (A1–A2) are established, and

lim inf
xi→0+

i=1,2

min
t∈[a,b]

ℓ(t, x1, x2)

x1 + x2
> λ1, (3.1)

lim sup
x2→+∞

max
t∈[a,b]

ℓ(t, x1, x2)

x2
< λ1 (3.2)

Hold uniformly for xi ∈ [0,+∞) (i = 1, 2), and λ1 is the first eigenvalue of T which is
defined by (2.9), then there’s at least one positive solution of the BVP (1.1,1.2).

Proof. By (3.1), there exists ι > 0, that makes

ℓ(t, x1, x2) ≥ λ1(x1 + x2), 0 < xi ≤ ι, i = 1, 2, t ∈ [a, b]. (3.3)

Choosing ι0 = min{ι, ι
̺} and for ∀ U ∈ ∂Kι0 , one has

0 <
H I

μ
a+

U (s) ≤ ̺ι0 ≤ ι, 0 < U (s) ≤ ι, s ∈ [a, b]. (3.4)

Accordingly, one can arrive at according to (3.3) and (3.4)
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(AU )(t) =
∫ b

a
H (t, s)̺(s)ℓ(s,H I

μ
a+

U (s), U (s))
ds

s

≥ λ1

∫ b

a
H (t, s)̺(s)

(
H I

μ
a+

U (s) +U (s)
)ds

s

≥ λ1(T U )(t), t ∈ [a, b].

(3.5)

By Lemma 6, T has a positive eigenfunction ζ in regard to λ1, i.e., ζ = λ1T ζ. Then
we will show

U − AU �= dζ, U ∈ ∂Kι0 , d ≥ 0. (3.6)

Otherwise, there is U0 ∈ ∂Kι0 and d0 ≥ 0 that makes U0 − AU0 = d0ζ, then d0 > 0 and
U0 = AU0 + d0ζ ≥ d0ζ. Assume d = sup{d|U0 ≥ dζ}, then d ≥ d0, U0 ≥ dζ, λ1T U0 ≥
λ1dT ζ = dζ. Thus, from (3.5), we get

U0 = AU0 + d0ζ ≥ λ1T U0 + d0ζ ≥ dζ + d0ζ = (d + d0)ζ,

which is a contradiction with the definition of d. So (3.6) holds and combing Lemma 8,
we have

i(A, Kι0 , K ) = 0. (3.7)

Now taking a constant 0 < σ < 1 makes

lim sup
x2→+∞

max
t∈[a,b]

ℓ(t, x1, x2)

x2
< ωλ1, (3.8)

and a linear operator T̃ U = ωλ1T U is defined, then subsequently T̃ is a bounded linear
operator from E to E , and T̃ (K ) ⊂ K . Additionally, T̃ ζ = ωλ1T ζ = ωζ, and so the
spectral radius of T̃ is r(T̃ ) = ω and T̃ also has the first eigenvalue r−1(T̃ ) = ω−1 > 1.
Adopting Gelfand’s formula, one can obtain

ω = lim
n→+∞

‖T̃ n‖ 1
n . (3.9)

Let ε0 = 1
2 (1 − ω) and by (3.9), there is a large enough natural number N0, and when

n ≥ N, we have ‖T̃ n‖ ≤ [ω + ǫ0]
n. For ∀ U ∈ E , we define

‖U ‖⋆ =
N

∑
i=1

[ω + ǫ0]
N−i‖T̃ i−1

U ‖, (3.10)

where T̃ 0 = I is the unit operator. Apparently, ‖.‖⋆ is another norm of E .
In addition, according to (3.2), there is j1 > ι, we have

ℓ(t, x1, x2) ≤ ωλ1x2, for x2 ≥ j1, xi ≥ 0, i = 1, 2, t ∈ [a, b]. (3.11)

Choosing

j > max

{
j1,

2(ω + εN−1
0 )−1

ε0
C⋆

}
,

where C⋆ = ‖C‖⋆ and

C = sup
U ∈Kj1

∫ b

a

w

Γ(♭− μ)(ln b
a )

̟(s)̺(s)ℓ(s,H I
μ
a+

U (s), U (s))
ds

s

< +∞ (by (2.11)).

(3.12)

Then we prove that
AU �= μU , U ∈ ∂Kj, μ ≥ 1. (3.13)
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If not, then there is U1 ∈ ∂Kj and d1 ≥ 1 that makes AU1 = d1U1. Assume Ũ (t) =
min{U1(t), j1} and D(U1) = {t ∈ [a, b] : U1(t) > j1}. Assume

ξ(t) =
Γ(♭− μ)(ln b

a )

w
ϑ(t).

According to Ũ ∈ C([a, b], [0,+∞)), ξ(t)j ≤ U1(t) ≤ ‖U1‖ = j and AU1 = μ1U1, we
have U1 meets boundary conditions, Thus, we get u1(0) = 0, hence, there is 0 < t0 ≤ 1
that makes u1(t0) = R. Hence, Ũ (t) = min{U1(t), j1} ≤ min{j, j1} = j1 for t ∈ [a, b], and
Ũ (t0) = min{U1(t0), j1} = min{j, j1} = j1, then we get ‖Ũ ‖ = j1. Because

Ũ (t) = min{U1(t), j1} ≥ min{ξ(t)j, j1} ≥ j1ξ(t), t ∈ [a, b],

Thus, ũ ∈ ∂Kj1 . For t ∈ D(U1), U1(t) ≥ j1,H I
μ
a+

U1(t) ≥ 0, by (3.11) and Lemma 2,
one gets

(AU1)(t) =
∫ b

a
H (t, s)̺(s)ℓ

(
s,H I

μ
a+

U1(s), U1(s)
)ds

s

≤
∫

D(U1)
H (t, s)̺(s)ℓ

(
s,H I

μ
a+

U1(s), U1(s)
)ds

s

+
∫

[a,b]\D(u1)
H (t, s)̺(s)ℓ

(
s,H I

μ
a+

U1(s), U1(s)
)ds

s

≤σλ1

∫ b

a
H (t, s)̺(s)U1(s)

ds

s

+
∫ b

a

w

Γ(♭− μ)(ln b
a )

̟(s)̺(s)ℓ
(

s,H I
μ
a+

Ũ (s), Ũ (s)
)ds

s

≤(T̃ U1)(t) + C, t ∈ [a, b].

(3.14)

It is noted that T̃ is a bounded linear operator and from K to K , from (3.14) one arrives

0 ≤ (T̃ j(AU1))(t) ≤ (T̃ j(T̃ U1 + C))(t), j = 0, 1, 2, · · · , n − 1, t ∈ [a, b]. (3.15)

Then, by (3.15), we have

‖(T̃ j(AU1))‖ ≤ ‖(T̃ j(T̃ U1 + C))‖, j = 0, 1, 2, · · · , n − 1,

that gives rise to

‖AU1‖⋆ =
n

∑
i=1

[ω + ε0]
n−i‖T̃ i−1(AU1)‖

≤
n

∑
i=1

[ω + ε0]
n−i‖T̃ i−1(T̃ U1 + C)‖ = ‖T̃ U1 + C‖⋆.

(3.16)

By U1 ∈ ∂Kj, ‖U1‖ = j, and (3.10), the following formula can be developed

‖U1‖⋆ > [ω + ε0]
n−1‖U1‖ = [ω + ε0]

n−1R >
2
ε0

C⋆,

which results in
C⋆

<
ǫ0

2
‖U1‖⋆. (3.17)
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According to (3.10), (3.16) and (3.17), one obtains

μ1‖U1‖⋆ = ‖AU1‖⋆ ≤ ‖T̃ U1‖⋆ + C⋆ =
n

∑
i=1

[σ + ǫ0]
n−i‖T̃ i

U1‖+ C⋆

= [σ + ε0]
n−1

∑
i=1

[σ + ε0]
n−i−1‖T̃ i

U1‖+ ‖T̃ N
U1‖+ C⋆

≤ [σ + ε0]
N−1

∑
i=1

[σ + ε0]
n−i−1‖T̃ i

U1‖+ [σ + ǫ0]
N‖U1‖+ C⋆

= [σ + ε0]
N

∑
i=1

[σ + ε0]
n−i‖T̃ i−1

U1‖+ C⋆

= [σ + ε0]‖u1‖⋆ + C⋆ ≤ [σ + ε0]‖U1‖⋆ +
ε0

2
‖U1‖⋆

=

[
1
4

σ +
3
4

]
‖U1‖⋆.

Taking care of d1 ≥ 1, we have 1
4 ω + 3

4 ≥ 1, and thus ω ≥ 1, which contradict with
0 < ω < 1. Thus (3.13) is right, and by Lemma 9 , we have

i(A, Kj, K ) = 1. (3.18)

Combing (3.7) with (3.18), we have

i(A, Kj \K ι0 , j) = i(A, Kj, K )− i(A, Kι0 , K ) = 1.

Hence, A has at least one fixed point in KR\Kr0 , that is to say, the BVP (2.1, 2.2) has at
least one positive solution, which implies that BVP (1.1, 1.2) also has at least one positive
solution. Another case for Equations (1.1) and (1.2) will be discussed herein. For this
purpose, for ∀ small enough 0 < ε < 1, we define a linear operator Tε

(TεU )(t) =
∫ b−ε

a+ε
H (t, s)̺(s)U (s)

ds

s
, t ∈ [a, b].

According to Lemma 7, we haveTε form K to K denotes a linear operator with
complete continuity, too, and the spentral radius r(Tε) of Tε) unequal to 0, and furthermore,
Tε has a positive eigenfunction ζε in regard to its first eigenvalue λε = (r(Tε))−1.

Lemma 10. Assume that (A1) holds, then T has an eigenvalue λ̃1 that makes

lim
ε→0+

λε = λ̃1.

Proof. Choose . . . ≤ εn ≤ . . . ≤ ε2 ≤ ε1 and εn tend to 0 as n → +∞. Then for ∀ n < m
and ζ ∈ E , we get

(Tεn ζ)(t) ≤ (Tεm ζ)(t) ≤ (T ζ)(t), t ∈ [a, b],

and
(T k

εn
ζ)(t) ≤ (T k

εm
ζ)(t) ≤ (T kζ)(t), t ∈ [a, b], k = 2, 3, · · · ,

where T k
εn

= T (T k−1
εn

) (k = 2, 3, · · · ). Thus, ‖T k
εn
‖ ≤ ‖T k

εm
‖ ≤ ‖T k‖ (k = 1, 2, · · · ).

By Gelfand’s formula, we obtain λ1 ≤ λεm ≤ λεn , and λ1 is the first eigenvalue of T .
According to {λεn} monotonous property with lower boundedness λ1, assume

λεn → λ̃1(n → +∞).
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Now we prove that λ̃1 is one of eigenvalue of T . Assume ζεn is one of positive
eigenfunction of Tεn in regard to λεn with ‖ζεn‖ = 1 (n = 1, 2, · · · ), that is,

ϕεn(t) = λεn

∫ b−εn

a+εn

H (t, s)̺(s)ζεn(s)
ds

s
= λεnTεn ζεn(t), t ∈ [a, b]. (3.19)

Take notice that

‖Tεn ζεn‖ = max
a≤t≤b

∫ b−εn

a+εn

H (t, s)̺(s)ζεn(s)
ds

s
≤
∫ b

a

w

Γ(♭− μ)(ln b
a )

̟(s)̺(s)
ds

s
, n = 1, 2, · · · ,

and hence {Tεn ζεn} ⊂ E is uniform boundedness. In addition, for ∀ n ∈ N and t1, t2 ∈ [a, b],
one arrives

|Tεn ζεn(t1)−Tεn ζεn(t2)| ≤
∫ b−εn

a+εn

|H (t1, s)−H (t2, s)|̺(s)ζεn(s)
ds

s
.

Since H (t, s) has uniform continuity property on [a, b]× [a, b], we have {Tεn ζεn} ⊂ E

is equicontinuous. Combing the Arzela-Ascoli theorem, Lemma 3.3 and λεn → λ̃1(n →
+∞), we have ζεn → ζ0 ( n → +∞). This implies ‖ζ0‖ = 1, then by using (3.19), we get

ζ0(t) = λ̃1

∫ b

a
H (t, s)̺(s)ζ0(s)

ds

s
, t ∈ [a, b],

in short, ζ0 = λ̃1T ζ0.

Theorem 2. Suppose (A1-A2) hold, and

lim sup
xi→0+

i=1,2

max
t∈[a,b]

ℓ(t, x1, x2)

x2
< λ1, (3.20)

lim inf
x1+x2→+∞

min
t∈[a,b]

ℓ(t, x1, x2)

x1 + x2
> λ̃1, (3.21)

where λ1 represents the first appeared eigenvalue of T and λ̃1 is another eigenvalue of T , then the
BVP (1.1,1.2) has at least one positive solution.

Proof. First of all, from (3.20), for ∀ t ∈ [a, b], there is ι0 > 0 such that

ℓ(t, x1, x2) ≤ λ1x2, 0 < x1 ≤ (ln b − ln a)μ

Γ(μ + 1)
ι0, 0 < x2 ≤ ι0, t ∈ [a, b]. (3.22)

Hence, for any U ∈ ∂Kι0 , noticing H I
μ
a+

U (s) ≤ (ln b−ln a)μ

Γ(μ+1) ι0, |U (s)| ≤ ‖U ‖ = ι0. By
(3.22), we get

(AU )(t) =
∫ b

a
H (t, s)̺(s)ℓ(s,H I

μ
a+

U (s), U (s))
ds

s

≤ λ1

∫ b

a
H (t, s)̺(s)U (s)

ds

s

= λ1(T U )(t), t ∈ [a, b].

(3.23)

As a matter of fact, we assume there are no fixed points for on A on ∂Kι0 . It is necessary
to prove

AU �= dU , for any U ∈ ∂Kι0 , d ≥ 1. (3.24)

If not, there is U0 ∈ ∂Kι0 and d0 ≥ 1 such that AU0 = d0U0. Then d0 > 1 and from
(3.23), we obtain

d0U0 = AU0 ≤ λ1T U0. (3.25)
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According to induction from (3.25), we achieve

dn
0U0 ≤ λn

1T
n
U0, n = 1, 2, · · · ,

we easily get

‖T n‖ ≥ ‖T nU0‖
‖U0‖

≥ μn
0‖U0‖

λn
1‖U0‖

=
μn

0
λn

1
.

Additionally, one derives the following result through the Gelfand formula

r(T ) = lim
n→∞

n

√
‖T n‖ ≥ μ0

λ1
>

1
λ1

,

but it contradict with r(T ) = λ−1
1 . So (3.23) holds. Applying Lemma 3.2, one demonstrates

i(A, Kι0 , K ) = 1. (3.26)

According to (3.21) and λε → λ̃1(ε → 0+), it exists a sufficiently tiny ε ∈ (0, 1
2 ) and

j > ι, we have
ℓ(t, x1, x2) ≥ λε(x1 + x2) ≥ ρε j, t ∈ [a, b], (3.27)

where λε represents the first appeared eigenvalue Tε, ρε = 2(ln(a + ε))♭−μ−1. Assume ζε be
the positive eigenfunction of Tε with respect to λε, then ζε = λεTεζε.

For an any U ∈ ∂Kj, s ∈ [a + ε, b − ε], by (2.13)–(2.15), we achieve

H I
μ
a+

U (s) +U (s) =
1

Γ(μ)

∫ t

a
(ln t − ln s)μ−1

U (s)
ds

s
+U (s)

≥ ‖U ‖(ln t)♭−μ−1̺ + ‖U ‖(ln t)♭−μ−1̺

≥ 2‖U ‖̺(ln(a + ε))♭−μ−1 = ρε j.

(3.28)

Combing (3.27) with (3.28) , one has

(AU )(t) =
∫ b

a
H (t, s)̺(s)ℓ(s,H I

μ
a+

U (s), U (s))
ds

s

≥
∫ b−ε

a+ε
H (t, s)̺(s)ℓ(s,H I

μ
a+

U (s), U (s))
ds

s

≥ λε

∫ b−ε

a+ε
H (t, s)̺(s)

(
H I

μ
a+

U (s) +U (s)
)ds

s

≥ λε

∫ b−ε

a+ε
H (t, s)̺(s)U (s)

ds

s

= λε(TεU )(t), t ∈ [a, b].

By the similar method with the proof of Theorem 1, one gets

U − AU �= dζε, U ∈ ∂Kj, d ≥ 0,

by using Lemma 8, one arrives at

i(A, Kj, K ) = 0. (3.29)

Combing (3.26) with (3.29), one obtains

i(A, Kj \K ι0 , K ) = i(A, Kj, K )− i(A, Kι0 , K ) = −1.

Hence, A at least has one fixed point in KR \ Kr0 , which means BVP (2.1,2.2) at least
has a positive solution, i.e., the BVP (1.1,1.2) has at least one positive solution. The proof
is completed.
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4. Example

Example 1. For a boundary value problem show as follows

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

−H D
5
2
a+

v(t) = g(t)ℓ

(
t, v(t),H D

1
4
a+

v(t)

)
, a < t < b,

H D
1
4
a+

v(a) =H D
5
4
a+

v(a) = 0,

H D
1
4
a+

v(b) =
∞

∑
j=1

ηH
j D

1
4
a+

v(ξ j),

(4.1)

where ♭ = 5
2 , μ = 1

4 , a = 1, b = 3, a = 1, b = 3, κj = 1
16

1
j4

, ς j = e
1
j4 , ̺(t) = 1

3(1−t)(t−3) ,

ℓ(t, x, y) = (x + y)−
1
3 + | ln y|. Clearly, ̺(t) is singular at t = a or/and t = b, ℓ(t, x, y) is

singular at x = y = 0. Let U (t) =H D
1
4
a+

V (t), the BVP (4.1) can be reduced to an amended
boundary value problem shown as follows

⎧
⎪⎪⎨
⎪⎪⎩

−H D
9
4
a+

U (t) = ̺(t)ℓ(t,H I
1
4
a+

U (t), U (t)), a < t < b,

U (a) = U
′(a) = 0, U (b) =

∞

∑
j=1

ηjU (ξ j),
(4.2)

by simple calculations, we have

∆ = (ln
b

a
)♭−μ−1 −

∞

∑
j=1

κj(ln
ς j

a
)♭−μ−1 = 0.1554,

clearly, we have

G (t, s) =
1

(ln 3)
5
4 Γ( 9

4 )

⎧
⎨
⎩
(ln t)

5
4 (ln 3 − ln s)

5
4 − (ln t − ln s))

5
4 (ln 3)

5
4 , 1 ≤ s ≤ t ≤ 3,

(ln t)
5
4 (ln 3 − ln s)

5
4 , 1 ≤ t ≤ s ≤ 3,

(4.3)

H (t, s) = G (t, s) +
(ln t)

5
4

∆

∞

∑
j=1

κjG (ς j, s),

w = 1 +
(ln b

a )
♭−μ−1

∆

∞

∑
j=1

ηj = 1 +
(ln 3)

5
4

0.1554

∞

∑
j=1

1
16

1
j4

≈ 1.4895,

then the cone

K = {U ∈ C[1, e] : U (t) ≥ ϑ(t)

(ln 3)w
‖U ‖ ≥ 0.6150ϑ(t)‖U ‖}.

For any 0 < r < R < +∞ and u ∈ K R \Kr, we have

(ln t)
5
4 ̺r ≤ U (t) ≤ R̺,

(ln t)
5
4 ̺r ≤ ‖u‖(ln t)♭−μ−1̺ ≤ v(t) =H I

1
4
1+U (t) ≤ 1

Γ( 5
4 )

(ln 3)
1
4 ‖U ‖ ≤ ̺‖U ‖, t ∈ [1, 3],

̺ = min

{
1

(ln b
a )

γ−μ−1w
,
(ln a)♭−μ(−1)♭−μ−1

Γ(μ)γ(ln b
a )

♭−μw
, 1

}
= min

{
1

(ln 3)
5
4 w

,
(−1)

5
4

Γ( 1
4 )γ(ln 3)

9
4 w

, 1

}
,

̺ = max

{
1,

(ln b
a )

μ

Γ(μ + 1)

}
= max

{
1,

(ln 3)
1
4

Γ( 5
4 )

}
. (4.4)
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Since | ln u| decreases on (0, 1), and increases on (1,+∞), one must have

| ln u(t)| ≤ 2| ln R|+ |(ln t)4|, t ∈ [1, e],

[x(t) + y(t)]−
1
3 ≤

[
(ln t)4r +

B(5, 1
2 )

Γ(μ)
r(ln t)−

1
2

]− 1
3

, t ∈ [1, e].

where B(5, 1
2 ) is a Beta function. By considering the absolute continuity of the obtained integral,

one can derive that

lim
m→∞

∫

e(m)
̟(s)̺(t)

(
(ln t)4r +

[
(ln t)4r + B(5,

1
2
)r(ln t)−

1
2

]− 1
3
)

ds

s
= 0.

Hence,

lim sup
m→+∞

sup
x1∈K

R\Kr
x2∈KR\Kr

∫

e(m)
̟(s)̺(s) f (s, x1(s), x2(s))

ds

s

≤ lim sup
m→+∞

sup
x1∈K

R\Kr
x2∈KR\Kr

∫

e(m)
(ln

s

a
)(ln

b

s
)♭−μ−1 1

3(1 − s)(s − 3)

[
(x1 + x2)

− 1
3 + | ln x2|

]ds

s

≤ lim sup
m→+∞

∫

e(m)
(ln

s

a
)(ln

b

a
)

5
4

1
3(1 − s)(s − 3)

(
(ln t)4r +

[
(ln t)4r + B(5,

1
2
)r(ln t)−

1
2

]− 1
3
)

ds

s
= 0,

where R = 1
Γ(μ+1) (ln

b
a )

μR = 1
Γ( 5

4 )
(ln 3)

1
4 R. So (H1) holds. On the other hand, it is obvious that

lim inf
x1→0+

x2→0+

inf
t∈[1,3]

f (t, x1, x2)

x1 + x2
= lim inf

x1→0+

x2→0+

(x1 + x2)
− 1

3 + | ln x2|
x1 + x2

= +∞,

lim sup
x1+x2→+∞

x2→+∞

sup
t∈[1,3]

f (t, x1, x2)

x2
= lim sup

x1+x2→+∞
x2→+∞

sup
t∈[1,3]

((x1 + x2)
− 1

3 + | ln x2|)
x2

= 0,

which implies that

lim inf
x1→0+

x2→0+

inf
t∈[1,3]

f (t, x1, x2)

x1 + x2
> λ1 > lim sup

x1+x2→+∞
x2→+∞

sup
t∈[1,3]

f (t, x1, x2)

x2
.

So far, all the condition proposed in Theorem 1 have been meet. Consequently,
Theorem 1 ensures that there must be one or more positive solutions to Equation (4.2).
Equivalently, one or more positive solutions can be determined for Equation (4.2). It
is worth mentioning that the calculation of fractional derivatives generally involves the
beta function. In this example, because a specific explicit expression is provided, the beta
function appears. However, in the general setting, if the function is abstract, then such the
beta function will not appear.

5. Conclusions

The present study was concerned with the positive solutions and their existence for a
nonlinear infinite-point Hadamard fractional differential equation. Using the fixed point
theorem in cones, the nonlinear singularities on time and spatial variables are achieved
through the spectral analysis of the relevant linear operator and Gelfand’s formula. Com-
pared with some existing literature discussing the same interval we derived herein, we
overcome a significant difficulty that the consideration of solutions on this interval brings
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about a series of problems. Compared with some other existing literature, the nonlin-
ear term of the equation contains the derivative term, and the infinite point is involved
in the boundary conditions. These are the main contributions and innovations of the
present research.
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Well-Posedness of the Mild Solutions for Incommensurate
Systems of Delay Fractional Differential Equations

Babak Shiri

Data Recovery Key Laboratory of Sichuan Province, College of Mathematics and Information Science,
Neijiang Normal University, Neijiang 641100, China; shiribabak2018@gmail.com

Abstract: Systems of incommensurate delay fractional differential equations (DFDEs) with
non-vanishing constant delay of retarded type are investigated. It is shown that the mild
solutions are well-posed in Hadamard sense on the space of continuous functions. The
analysis is local and carried out for finite intervals. The strong results are obtained with
weak conditions by using state-of-the-art new methods. No condition on the Lipschitz
parameter is added for well-posedness results. Application of this theorem for the Hopfield
neural network is carried out.

Keywords: fractional differential equation; well-posed in Hadamard sense; non-vanishing
constant delay of retarded type; incommensurate systems; Hopfield neural networks

1. Introduction

Fractional differential equations (FDEs) have found extensive use in the modeling of
complex systems, primarily due to their ability to represent memory in systems dynam-
ics [1,2]. Fortunately, there are various fractional derivatives, each having different memory
kernels. This diversity, provide us with a rich set of operators capable of capturing the
intricate dynamics of complex natural systems [3].

Similar to FDEs, delay differentiate equations (DDEs) have been widely applied in
mathematical models, especially in biological phenomena [4]. However, DDEs are rarely
studied and well-analyzed in connection to FDEs. The analysis of the linear delay fractional
differential equation (DFDE),

Dψy(t) = ay(θ(t)) + by(t) + f (t), t > 0, ψ ∈ (0, 1), a, b ∈ R, f ∈ C[0,T], (1)

has been explored in [5]. In their paper, the lag term is defined by θ(t) := t − τ with a
constant time delay τ > 0. This study covers the uniqueness of the mild solution and the
dependency of the mild solution on its parameters. The stability of the problem (1) has also
been studied [6].

We note that such DFDEs are known as retarded ones since the lag term does not
involve fractional derivatives. If the equation involves terms like Dψy(θ(t)), the equation
becomes a neutral type, which we do not study here. The existence result of fractional-order
neutral time-delay systems can be found in [7].

Most applied problems can not be modeled by a simple one-D equations like (1). A
state of natural systems involves more than one component that are connected to each other
to achieve an aim. In mathematics, a system is described by more than one equation. If
the dynamics of each state depend on other states, it is called a coupled system. FDEs and
DFDEs are utilized in diverse modeling. Currently, there is abundant work in biology, me-
chanics, electronics, and other branch of science that use systems of FDEs in their modeling.

Fractal Fract. 2025, 9, 60 https://doi.org/10.3390/fractalfract9020060
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However, they usually use a common order for all equations. But there is no need for all
states to have the same memory and thus the same order of derivatives [8,9]. Therefore, the
systems that may have different orders for each equation must be important for modeling.
Such systems are known as incommensurate systems [10,11]. Incommensurate FDEs have
been used in the structure of fractional Hopfield neural networks (FHNNs) [11–13].

A linear incommensurate system of DFDEs with multiple delays (multi-delay) can be
described by

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

CDψ1 y1(t) = a11y1(t) + . . . + a1νyν(t) + b11y1(θ1(t)) + . . . + b1νyν(θν(t)) + f1(t),
...

CDψν yν(t) = aν1y1(t) + . . . + aννyν(t) + bν1y1(θ1(t)) + . . . + bννyν(θν(t)) + fν(t),

(2)

where ψi ∈ (0, 1), aij, bi,j ∈ R and fi : [0,T] → R ∈ C[0,T], yi : [0,T] → R ∈ C[0,T], for
i, j = 1, . . . , ν. This system can be expressed in shorthand as

DΨY(t) = AY(t) + BY(Θ(t)) + F(t) (3)

where Ψ = [ψ1, . . . , ψν]T ∈ (0, 1)ν, Y = [y1, . . . , yν]T ∈ (C[0,T])ν, F = [ f1, . . . , fν]T ∈
(C[0,T])ν, Θ = [θ1, . . . , θν]T , θi(t) = t − τi, τi ∈ R, A = (aij) and B = (bij). The meaning
of such vector operators later will be recalled. Problem (2) has been studied subject to
delay condition

yi(t) = gi(t), t ∈ (−τi, 0]. (4)

If we assume that all delays are equal (i.e., τi = τ where τ > 0 is a positive constant),
then the initial condition and prehistoric conditions (4) can be expressed as

Y(t) = G(t), t ∈ (−τ, 0]. (5)

Such delays are also referred to as a single/constant delay. In this case, the lag term is
a single function, and we simply use θ to represent it, where θ(t) := t − τ. The nonlinear
DFDE with a constant delay can be described by

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

CDψ1 y1(t) = u1(t, y1(t), . . . , yν(t), y1(θ(t)), . . . , yν(θ(t))),
...

CDψν yν(t) = uν(t, y1(t), . . . , yν(t), y1(θ(t)), . . . , yν(θ(t))),

(6)

subject to condition (5). It can be written in a compact form as

DΨY(t) = U(t, Y(t), Y(Θ(t))). (7)

where Θ(t) = [θ, . . . , θ]T . We note that the related operations of Y(Θ(t)) are explained for
the algebra of the vector-valued function in the next sections, and they are not compos-
ite functions.

There are studies on systems with various delays for each state [14]. Specifically,
ref. [14] addresses the stability of a class of incommensurate DFDEs with multiple delays.
A numerical method for nonlinear systems of DFDE with a single/constant delay τi = τ

and commensurate order ψi = ψ has been studied in [15]. The stability of a class of
commensurate systems (3) with a constant delay, where A is a zero matrix, is studied
in [16].

The objective of this paper is to study System (6) with constant delay. Such systems
may appear in research papers, but fundamental questions regarding these systems, such
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as the existence of a unique solution and well-posedness are still unstudied. Existence
results for systems of fractional equations typically utilize fixed-point theorems like the
Banach fixed-point or Schauder fixed-point theorems. However, as discussed in [17] and
other relative works, these types of theorems impose additional conditions on U or even T.
Therefore, we apply the state-of-the-art method used in [17] to obtain strong results under
weaker conditions. In the main theorems, we will find that continuity of the functions U

and G and Lipschitz continuity of the function U with respect to Y is sufficient to guaranty
the existence of the unique mild solution. Moreover, we show it is sufficient to ensure
the continuous dependency of the mild solution to G, if we assume U is also Lipschitz
continuous with respect to W.

Remark 1. The fractional derivative and integral operators have two parameters. For example, in

RL integral

Iψy(t)(s) =
1

Γ(ψ)

∫ s

0
(s − t)1−ψy(t)dt.

the variable t is the dummy variable, and s is the active variable. Usually, in the literature, the active

variable is deleted. However, in this paper, for clarity, we may add the second variable to separate the

dummy variable and active variable.

2. Vector-Valued Operational Algebra

Here, we clarify the algebra of vector-valued functions and their related operations
through exact definitions. Suppose Y is a space of functions, and

F = [ f1, . . . , fν]
T : [0,T] → R

ν ∈ Yν

is a vector-valued function. For operators oi : Y → Y , we define the vector-operator

O = [o1, . . . , oν]
T : Yν → Yν

by
O(F) = [o1( f1), . . . , oν( fν)]

T = Diag([o1, . . . , oν])F.

Such an O can be CDΨ = [CDψ1 , . . . , CDψν ]T or IΨ = [Iψ1 , . . . , Iψν ]T .
The elementary operations such as addition, difference, product, division, and

power operations of vector-valued functions are performed element-wise. For example, if
G = [g1, . . . , gν] : [0,T] → Rν is another vector-valued function

F ± G = [ f1 ± g1, . . . , fν ± gν]
T .

Let Θ = [θ1, . . . , θν]T : [0,T] → Rν be a vector-lag term. Clearly, F(Θ) is not well-
defined as a composite function. However, we define it as vector-wise composite functional,

F(Θ) = [ f1(θ1), . . . , fν(θν)]
T . (8)

We note that, in our study Θ = [θ, . . . , θ]T can be substituted by θ and serve as a
composite function! Consequently, in our study, F(Θ) = F(θ). However, in multi-delay
cases, the use of element-wise composition is indispensable.

The operation of one-dimensional functions and operators with a scalar is inherited
by all elements of the vector. For example, if f : [0,T] → R is a scalar function, as well as
Ψ = [ψ1, . . . , ψν], then G = f Ψ is defined by

G = [ f ψ1 , . . . , f ψν ]T .
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Example 1. For Ψ = [ψ1, . . . , ψν]T and P = [p1, . . . , pν]T , we have

IΨtP =
Γ(P + 1)

Γ(P + Ψ + 1)
tΨ+P. (9)

We note that this equation is exactly similar to the computation of the non-vector case of

Iαtβ. However, we should note that the notation here has a different meaning. To be more clear, the

right-hand side of Equation (9) is

[
Γ(p1 + 1)

Γ(p1 + ψ1 + 1)
tp1+ψ1 , . . . ,

Γ(pν + 1)
Γ(pν + ψν + 1)

tpν+ψν ]T !

Theorem 1. Let 0 < ψi ≤ 1, i = 1, . . . , ν and Y ∈ (AC[0,T])ν. Then,

IΨ CDΨY = Y(t)− Y(0) (10)

and
CDΨIΨY(t) = Y(t). (11)

Theorem 2 (Generalized Gronwall inequality [18,19]). Suppose q,T > 0, c ≥ 0 and y :
[0,T] → R is a locally integrable and no-negative function satisfying

y(t) ≤ c + M
∫ t

0
(t − a)ψ−1y(s)ds (12)

Then, y(t) ≤ cEψ(MΓ(ψ)tψ).

3. Existence of a Unique Continuous Mild Solution with Single Delay

Applying the RL integral IΨ to both sides of (3), we obtain

Y(t) = Y(0) + IΨ AY(t) + IΨBY(Θ(t)). (13)

It is well-known that the solution to (13) may not be differentiated, or may not be in AC
(see, for example, [20]). So, the solution of (13) may not satisfies the original Equation (3).
But, in most applied mathematics, we need a solution of the model based on (3). Therefore,
we use the adjective “mild” before the word solution to emphasize that the solution of
associate integral may not be the solution of the original Equation (3).

We should note that interchanging the place of the fractional integral and constant
matrix in System (13) can be problematic. While this interchange is valid for commensurate
systems, it is incorrect for incommensurate systems. In particular, we have

IΨ AY �= AIΨY. (14)

This leads to additional complexities for incommensurate FDEs compared to commen-
surate FDEs.

Similarly, and in general, from (7), we can infer that the mild solution satisfies

Y(t) = Y(0) + IΨU(t, Y(t), Y(Θ(t))). (15)

Definition 1. We define Y as a mild solution of (7) under Condition (5) if it fulfills System (15).

Remark 2. A solution to (15) might not be differentiable and, therefore, might not satisfy the

original Problem (7) under Condition (5). However, the solution to the original problem satisfies (15).
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The existence of a mild solution of incommensurate systems of FDEs has been estab-
lished in [17]. Based on the discussion in that paper, the existence of a mild solution based
on the Banach fixed-point theorem and the Schauder fixed-point theorem require stronger
conditions. To obtain the weaker condition, the authors of [17] proposed a direct method
using Cauchy sequences. They first established the result on the interval [0, 1] and then
extended the global existence using the tail part of the RL integral.

Now, consider a single delay, τ. Let t ∈ (0, τ], which implies that t − τ ∈ (−τ, 0].
Then, Y(Θ(t)) = G(Θ(t)), and Equation (15) becomes equivalent to

Y(t) = G(0) + IΨU(t, Y(t), G(Θ(t))), t ∈ [0, τ]. (16)

We note that G(Θ(0)) = G(−τ) is not defined. We assume G(Θ(0+)) = G(−τ+) < ∞,
and extend G on [−τ, 0] by G(−τ) = G(−τ+) to use compactness of interval. It follows
immediately that G ∈ C[−τ, 0]. Also, it is clear the value of IΨ at t = 0 is zero for any
continuous function.

We use the absolute value notation as a norm in Rν, defined by

|Y| = max
i=1,... ,ν

|yi|.

However, we use the norm notation for spaces of functions, especially for
F ∈ (C[0,T])ν

‖F‖ = sup
t∈[0,T]

|F(t)| = sup
t∈[0,T]

max
i=1,... ,ν

| fi(t)|.

Now, consider the following hypotheses:

(H1) U is globally Lipschitz continuous with respect to Y, i.e., ∃ Li ∈ R, such that

|ui(t, Y, W)− ui(t, Z, W)| ≤ Li|Y − Z|

for all t ∈ [0,T], and for all Z, Y, W ∈ Rν.
(H2) U : [0,T]×Rν ×Rν → Rν is continuous with respect to its domain.
(H3) G is a continuous function on (−τ, 0] and limt→τ gi(t) < ∞.

Remark 3. Letting L = maxi=1,... ,ν |Li|, it follows from (H1) that

|U(t, Y, W)− U(t, Z, W)| ≤ L|Y − Z|, ∀t ∈ [0,T], ∀Z, Y, W ∈ R
ν.

Remark 4. More precisely, (H3) states that if we extend G to [−τ, 0] by G(−τ) = limt→τ G(t),

then it is continuous on [−τ, 0]. Thus, the condition (H3) can be expressed as “G is continuous on

[−τ, 0]”.

Theorem 3. Let Hypotheses (H1)–(H3) hold. Then, System (7) subject to Condition (5) processes

a mild continuous solution on [0, τ].

Proof. The proof is similar to Theorem 7 of [17], so we provide a proof sketch here. First,
we assume τ ≤ 1, introduce a Picard operator P by

PY = G(0) + IΨU(t, Y(t), G(Θ(t))) (17)

and we show that the functions

Yn+1 = PYn, Y0 = G0, n = 0, 1, . . .
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are Cauchy sequences in (C[0, τ])ν. Consequently, they have a uniform limit, say Y. By the
uniform convergence theorem for fractional integrals, we have

lim
N→∞

Yn+1 = lim
N→∞

PYn = G(0) + IΨU(t, YN(t), G(Θ(t)))

= G(0) + IΨ lim
N→∞

U(t, YN(t), G(Θ(t))).
(18)

Since U is continuous, we can rewrite the above as

lim
N→∞

Yn+1 = G(0) + IΨU(t, lim
N→∞

YN(t), G(Θ(t))). (19)

Thus, Y satisfies Equation (16). Now, assume that 1 < τ ≤ 2. Given that a solution
exists on [0, 1], w can decompose the IΨ into two operators: the Fredholm operator FΨ and
the Volterra operator VΨ. The Fredholm operator is defined as

FΨY(t) =
1

Γ(Ψ)

∫ 1

0
(t − z)Ψ−1Y(z)dz (20)

and the Volterra operator is defined as

VΨY(t) =
1

Γ(Ψ)

∫ t

1
(t − z)Ψ−1Y(z)dz. (21)

We know that IΨ = FΨ +VΨ. Therefore, Equation (16) can be written as

Y(t) = G(0) + FΨU(., Y(.), G(Θ(.)))(t) +VΨU(., Y(.), G(Θ(.)))(t), t ∈ [0, τ]. (22)

We have already established the existence of a solution of (16) on [0, 1]. For conve-
nience, we rename Y on [0, 1] by Y1. Then, the tail of Equation (22) is known function say Z,
i.e.,

Z(t) := G(0) + FΨU(., Y1(.), G(Θ(.)))(t).

Thus,
Y(t) = Z(t) +VΨU(., Y(.), G(Θ(.)))(t), t ∈ [1, τ]. (23)

Substituting t = s + 1 gives

Y(s + 1) = Z(s + 1) +
1

Γ(Ψ)

∫ s+1

1
(s + 1 − z)Ψ−1U(z, Y(z), G(Θ(z)))dz, (24)

where s ∈ [0, τ − 1]. If we substitute z = r + 1, we obtain

Y(s + 1) = Z(s + 1) +
1

Γ(Ψ)

∫ s

0
(s − r)Ψ−1U(r + 1, Y(r + 1), G(Θ(r + 1)))dr. (25)

It is interesting to note that when considering the Volterra operator at the peak
of dynamical System (25), it becomes an RL integral operate, and by renaming
Y2(s) = Y(s + 1), we obtain

Y2(s) = Z(s + 1) + JΨU(r + 1, Y2(r), G(Θ(r + 1)))(s), s ∈ [0, τ − 1]. (26)

Equation (26) is of the same form as (16). Consequently, the existence of a unique
Y2 ∈ (C[0, τ − 1])ν is guaranteed in the same way. Conclusively,

Y(t) =

{
Y1(t), t ∈ [0, 1],
Y2(t − 1), t ∈ [1, τ].

(27)
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Clearly, Y2(1 − 1) = Y2(0) = Z(1) = Y1(1) and Y is a continuous solution to (16) on
[0, τ]. By induction, (16) has a unique continuous solution for any τ > 0.

The uniqueness of the solution follows from the generalized Gronwall inequality.

Theorem 4. Let Hypotheses (H1)–(H3) hold. Then, System (7) subject to condition (5) has a

unique mild continuous solution on [0, τ].

Proof. The proof is similar to Theorem 10 of [17]. First, we show the uniqueness for τ ≤ 1.
Let X and Y be two solutions. Then,

|xi(t)− yi(t)| ≤ |Iψi ui(t, xi(t), gi(θi(t)))− Iψi ui(t, yi(t), gi(θi(t)))|, t ∈ [0, τ] ⊆ [0, 1].

Since t ≤ 1, it follows from Hypotheses (H1) that

|xi(t)− yi(t)| ≤
Li

Γ(αi)

∫ t

0
(t − z)ψi−1|X(z)− Y(z)|dz

≤ M∗
∫ t

0
(t − z)ψ∗−1|X(z)− Y(z)|dz

(28)

where M∗ = maxi=1,... ,ν
Li

Γ(αi)
and ψ∗ = mini=1,... ,ν ψi. We note that Inequality (28) is

independent of i. Thus,

|X(t)− Y(t)| ≤ M∗
∫ t

0
(t − z)ψ∗−1|X(z)− Y(z)|dz. (29)

Immediately, it follows from the generalized Gronwall inequity that |X(t)−Y(t)| = 0,
and X(t) = Y(t) for all t ∈ [0, 1]. Now, let τ ∈ [0, 2]. From a previous argument, we already
know that X(t) = Y(t) for t ∈ [0, 1]. From an argument similar to the proof of Theorem (3),
Y and X satisfies Equation (25) while the definition of Z only uses the information of Y(t)

on [0, 1]. Since Y is unique on [0, 1], the tail function Z is unique for all t ∈ [0, τ]. It follows
from (25) that

|X(s + 1)− Y(s + 1)| ≤ M∗
∫ s

0
(s − z)ψ∗−1|X(r + 1)− Y(r + 1)|dr, (30)

for s ∈ [0, τ − 1] ⊆ [0, 1]. Therefore, from the generalized Gronwall inequality,

X(s + 1) = Y(s + 1), s ∈ [0, τ − 1]

or, equivalently, X(t) = Y(t) on [1, τ] and, thus, on [0, τ]. Similar induction can be used to
prove that X(t) = Y(t) for any delay τ > 0.

Up to this point, we have determined that System (1) has a unique mild solution
within the interval [0, τ], and this solution is continuous. Now, we establish the existence
of a unique continuous solution for any arbitrary interval [0,T].

Theorem 5. Let Hypotheses (H1)–(H3) hold. Then, System (7) subject to Condition (5) processes

a unique mild continuous solution on [0,T].

Proof. If T < τ, the claim follows from Theorem 4. Suppose τ < T ≤ 2τ. We already
know that there exists a solution on [0, τ]. Denote this solution as Y1. Then, System (15) is
equivalent to

Y(t) = G(0) + FΨ
τ U(z, Y1(z), G(z − τ))(t) +VΨ

τ U(z, Y(z), Y1(z − τ))(t) (31)
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for t ∈ [τ,T], where

FΨ
τ Y(t) =

1
Γ(Ψ)

∫ τ

0
(t − z)Ψ−1Y(z)dz (32)

is a Fredholm operator, and

VΨ
τ Y(t) =

1
Γ(Ψ)

∫ t

τ
(t − z)Ψ−1Y(z)dz (33)

is a Volterra operator. For the tail of System (31) Z(t) = G(0) + FΨ
τ U(s, Y1(s), G(s − τ))(t)

the Fredholm operator only depends on the values of Y1(s) and G1(s − τ) on s ∈ [0, τ].
Since Y1 is known to be a unique, Z is well-defined unique function. Conclusively, by
substituting t = r + τ, we have (31),

Y(r + τ) = Z(r + τ) +VΨ
τ U(s, Y(s), Y1(s − τ))(r + τ). (34)

Regarding the peak operator, by substituting z = s + τ, we obtain

VΨ
τ U(s, Y(s), Y1(s − τ))(r + τ) =

1
Γ(Ψ)

∫ r+τ

τ
(r + τ − z)Ψ−1U(z, Y(z), Y1(z − τ))dz

=
1

Γ(Ψ)

∫ r

0
(t − z)Ψ−1U(s + τ, Y(s + τ), Y1(s))ds

=JΨU(s + τ, Y(s + τ), Y1(s))(r).

(35)

If we rename Y2(t) := Y(t + τ) and consider Equation (35), then Equation (34) can be
written as

Y2(r) = Z(r + τ) + JΨU(s + τ, Y2(s), Y1(s))(r), r ∈ [0,T− τ]. (36)

Noticeably, we convert an equation on [τ,T] into a similar type of equation on the
interval [0,T− τ] ⊆ [0, τ]. Therefore, we can use the same reasoning as in Theorems 3 and 4
to show that System (36) has a unique continuous solution on [0,T− τ].

We note that the only difference between Equations (16) and (36) is that G(0) is
replaced by Z(r + τ), which does not effect the proof. Thus, System (15) has a unique
solution, given by

y(t) =

⎧
⎪⎨
⎪⎩

G(t), t ∈ (−τ, 0],
Y1(t), t ∈ (0, τ],
Y2(t − τ), t ∈ (τ,T].

(37)

It is clear that Y(τ+) = Y2(0+) = Z(τ+) = Z(τ) = Y1(τ), indicating that Y is
continuous at τ. Moreover, Y(0+) = Y1(0+) = Y1(0) = G(0) = Y(0), showing that Y is
also continuous at 0. Conclusively, Y ∈ (C[0,T])ν. This completes the proof for this case.
The same recursive argument can be applied to prove the cases when T belongs to [2τ, 3τ],
[3τ, 4τ] and so on, thereby completing the proof.

4. Transforming DFDEs into Fractional Integral Equations
Without Delays

The existence analysis above presents a constructive approach to study DFDEs. Let

n = Ciel
(

T
τ

)
, meaning that n − 1 < T

τ ≤ n. Let Yj represent the solution on the interval

[(j − 1)τ, jτ] for j = 1, . . . , n. As stated previously, for j < n, we can define the Fredholem
operators related to the system’s memory on [(j − 1)τ, jτ] as follows:

FΨ
jτY(t) =

1
Γ(Ψ)

∫ jτ

(j−1)τ
(t − z)Ψ−1Yj(z)dz. (38)
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It should be noted that while this operator utilizes the information of Y at [(j − 1)τ, jτ],
the variable t can take on arbitrary values. In particular, this operator is well-defined for
[0, ∞). Consequently, the contribution of Y within the jth interval regarded to the memory
of the Fredholm operator (38) is distributed over future time.

Theorem 6. The memory associated with the fixed interval j is fading as t increases.

Proof. From Theorem (5), Yj is continuous. Assume t2 > t1 ≥ 1 + jτ. Then, t2 − z >

t1 − z > 1 and (t2 − z)1−ψi > (t1 − z)1−ψi ≥ 1 for z ∈ [(j − 1)τ, jτ]. Therefore,

(t2 − z)Ψ−1|Y(z)| < (t1 − z)Ψ−1|Y(z)| ≤ 1

where the inequities are component-wise. Thus,

FΨ
jτ |Y|(t2) ≤ FΨ

jτ |Y|(t1).

Therefore, FΨ
jτ |Y| is decreasing component-wise for t > 1 + jτ. Since Y is continuous,

and (t − z)Ψ−1Y(z) → [0, . . . , 0]T uniformly as t → ∞, we conclude that

FΨ
jτY(t) → [0, . . . , 0]T

as t → ∞. This indicates that the memory of jth interval fades to zero.

Finally, we can define the peak information of JΨ by Volterra operator,

VΨ
jτY(t) =

1
Γ(Ψ)

∫ t

jτ
(t − z)Ψ−1Y(z)dz (39)

where t ∈ [jτ, (j + 1)τ], for j = 0, . . . , n − 2, and t ∈ [(n − 1)τ,T] when j = n − 1. We show
that the translation of the peak operator is precisely the RL operator of a translation of Y.

Theorem 7. For j = 0, . . . , n − 1, we have

VΨ
jτY(t + jτ) = JΨY(s + jτ)(t). (40)

Proof. Substitute s = z − jτ into (39). This gives

VΨ
jτY(t) =

1
Γ(Ψ)

∫ t−jτ

0
(t − s − jτ)Ψ−1Y(s + jτ)ds. (41)

Now, consider the value of this operator when t is replaced by t + jτ,

VΨ
jτY(t + jτ) =

1
Γ(Ψ)

∫ t

0
(t − s)Ψ−1Y(s + jτ)ds = JΨY(s + jτ)(t) (42)

where t ∈ [0, τ] for j < n − 1 and t ∈ [0,T− (n − 1)τ] if j = n − 1.

For convenience, we define Y0(t) = G(t) on the interval (−τ, 0]. Then, we have the
following series of equations: For t ∈ (0, τ], Y1 is given by

Y1(t) = G(0) + JΨU(s, Y1(s), Y0(Θ(s)))(t), (43)

for t ∈ (τ, 2τ], Y2 is expressed as

Y2(t) = G(0) + FΨ
τ U(s, Y1(s), Y0(Θ(s)))(t) +VΨ

τ U(s, Y2(s), Y1(Θ(s)))(t),
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and for j < n, and t ∈ ((j − 1)τ, jτ], Yj is obtained by

Yj(t) =G(0) +
j−1

∑
i=1

FΨ
iτU(s, Yi(s), Yi−1(Θ(s)))(t)

+VΨ
(j−1)τU(s, Yj(s), Yj−1(Θ(s)))(t),

(44)

For final interval t ∈ ((n − 1)τ,T], where j = n, we have

Yn(t) =G(0) +
n−1

∑
i=1

FΨ
iτU(s, Yi(s), Yi−1(Θ(s)))(t)

+VΨ
(n−1)τU(s, Yn(s), Yn−1(Θ(s)))(t).

(45)

We define the tail function as

Zj(t) = G(0) +
j−1

∑
i=1

FΨ
iτU(s, Yi(s), Yi−1(Θ(s)))(t).

By using Theorem 7, we obtain integral equations

Yj(t + jτ) = Zj(t + jτ) + JΨU(s + jτ, Yj(s + jτ), Yj−1(Θ(s + jτ)))(t) (46)

for j = 1, . . . , n − 1, t ∈ (0, τ], and j = n, t ∈ (0,T− (n − 1)τ] ⊆ (0, τ]. It is clear that
Equation (46) is an integral equation with respect to Yj(t + jτ).

5. Well-Posedness

The well-posedness of a mathematical problem in the Hadamard sense requires
three conditions: existence, uniqueness, and stability. Until now, we have provided the
first two conditions. In this section, we investigated the third condition. The stability for
the well-posedness of a problem implies that the solution depends continuously to the
data. In particular, for initial value problems, the data consists of initial conditions. Here,
the given data are a function G which is well-defined at (−τ, 0]. To ensure the stability,
let emphasize the dependence of Y to G through Y(t, G). Let Ỹ(t, G̃) be a solution to (46)
corresponding with G̃. This implies Ỹ0(t) = G̃(t) for t ∈ (0, τ] and Ỹj satisfies the systems
described by (46). To establish well-posedness we need a slightly stronger assumption than
(H1). This assumption involves adding Lipschitz continuity for the third parameter of U.

(H4) U is globally Lipschitz continuous with respect to Y and W, i.e., ∃ Li ∈ R, such that

|ui(t, Y, W)− ui(t, Ŷ, Ŵ)| ≤ Li max{|Y − Ŷ|, |W − Ŵ|}

for all t ∈ [0,T] and for all Y, W, Ŷ, Ŵ ∈ Rν.

Theorem 8. Let Hypotheses (H2)–(H4) hold. Then, the mild solution of System (7) subject to

Condition (5) is Lipschitz continuous with respect to G on the finite interval [0,T].

Proof. Let M = max Li
Γ(αi)

. Then,

|Y1(t)− Ỹ1(t)| ≤|G(0)− G̃(0)|

+ M
∫ t

0
(t − z)ψ∗−1 max{|Y1(z)− Ŷ1(z)|, |G(z)− Ĝ(z)|}

(47)
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for t ≤ 1, where ψ∗ = min ψi. Therefore,

|Y1(t)− Ỹ1(t)| ≤|G(0)− G̃(0)|

+ M
∫ t

0
(t − z)ψ∗−1|Y1(z)− Ŷ1(z)|dz

+ M
∫ t

0
(t − τ)ψ∗−1|G(z)− Ĝ(z)|dz

for t ≤ 1. Thus,

|Y1(t)− Ỹ1(t)| ≤|G(0)− G̃(0)|+ M
∫ t

0
(t − z)ψ∗−1|Y1(z)− Ŷ1(z)|dz

+ M
∫ t

0
(t − τ)ψ∗−1|G(z)− Ĝ(z)|dz.

It follows that

|Y1(t)− Ỹ1(t)| ≤
(

1 +
Mtψ∗

ψ∗

)
‖G − G̃‖+ M

∫ t

0
(t − z)ψ∗−1|Y1(z)− Ŷ1(z)|dz (48)

and, thus,

|Y1(t)− Ỹ1(t)| ≤
(

1 +
Mtψ∗

ψ∗

)
Eψ∗(MΓ(ψ∗)tψ∗

)‖G − G̃‖. (49)

Consequently,
|Y1(t)− Ỹ1(t)| = C1‖G − G̃‖, t ∈ [0, 1], (50)

where C1 := maxt∈[0,1]

(
1 + Mtψ∗

ψ∗

)
Eψ∗(MΓ(ψ∗)tψ∗

). This completes the proof on [0, τ]

when τ ≤ 1. Now, consider τ ∈ [0, 2]. For t > 1, we have

|Y1(t)− Ỹ1(t)| ≤|G(0)− G̃(0)|+ M
∫ t

0
|(t − z)Ψ−1||Y1(z)− Ŷ1(z)|dz

+ M
∫ t

0
|(t − z)Ψ−1||G(z)− Ĝ(z)|dz

≤|G(0)− G̃(0)|+ M
∫ 1

0
|(t − z)Ψ−1||Y1(z)− Ŷ1(z)|dz

+ M
∫ t

1
|(t − z)Ψ−1||Y1(z)− Ŷ1(z)|dz + M

∫ t

0
|(t − z)Ψ−1||G(z)− Ĝ(z)|dz

≤‖G − G̃‖+ M max
z∈[0,1]

|Y1(z)− Ŷ1(z)|Ω + M
∫ t

1
|(t − z)Ψ−1||Y1(z)− Ŷ1(z)|dz

+ M‖G − Ĝ‖Ω

≤(1 + MC1Ω + MΩ)‖G − Ĝ‖+ M
∫ t

1
|(t − z)Ψ−1||Y1(z)− Ŷ1(z)|dz

(51)

where

Ω := max
t∈[0,2]

∫ t

0
|(t − z)Ψ−1|dz

and, clearly, Ω < ∞. It immediately follows that

|Y1(t + 1)− Ỹ1(t + 1)| ≤ C2‖G − Ĝ‖+ M
∫ t

0
(t − s)ψ∗−1|Y1(s + 1)− Ŷ1(s + 1)|ds (52)
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for t ∈ [0, 1] where C2 = 1 + MC1Ω + MΩ. By applying the generalized Gronwall
inequality, we obtain

|Y1(t + 1)− Ỹ1(t + 1)| ≤ C2Eψ∗(MΓ(ψ∗)tψ∗
)‖G − Ĝ‖, t ∈ [0, 1] (53)

and, thus,

|Y1(t)− Ỹ1(t)| ≤ C2Eψ∗(MΓ(ψ∗)(t − 1)ψ∗
)‖G − Ĝ‖, t ∈ [1, 2]. (54)

Particularly, by defining C3 = max{C1, maxt∈[0,1] C2Eψ∗(MΓ(ψ∗)(t − 1)ψ∗
)}, we have

|Y1(t)− Ỹ1(t)| ≤ C3‖G − Ĝ‖, t ∈ [0, τ]. (55)

Using the same induction, Equation (55) holds for any τ < ∞. Now we consider the
dynamics of the system for t > τ. Suppose that

|Y(t)− Ỹ(t)| ≤ C‖G − Ĝ‖, t ∈ [0, (j − 1)τ], j ≥ 1 (56)

for some constant C. We provide the same result on [(j− 1)τ, jτ]. We note that, by definition
of Zj,

Zj(t) = G(0) +
1

Γ(Ψ)

j−1

∑
i=1

∫ iτ

(i−1)τ
(t − s)Ψ−1U(s, Yi(s), Yi−1(Θ(s)))ds. (57)

Thus,

|Zj(t)− Z̃j(t)| ≤|G(0)− G̃(0)|

+ M
j−1

∑
i=1

∫ iτ

(i−1)τ
|(t − s)Ψ−1|max{|Yi(s)− Ỹi|, |Yi−1(Θ(s))− Ỹi−1(Θ(s))|}ds

(58)

For i ≤ j − 1, based on the assumption, |Yi(s)− Ỹi| ≤ C‖G − Ĝ‖ and |Yi−1(Θ(s))−
Yi−1(Θ(s))| ≤ C‖G − Ĝ‖. Therefore, for t ∈ [(j − 1)τ, jτ],

|Zj(t)− Z̃j(t)| ≤|G(0)− G̃(0)|+ MC‖G − Ĝ‖
j−1

∑
i=1

∫ iτ

(i−1)τ
|(t − s)Ψ−1|ds

≤‖G − G̃‖+ MC‖G − Ĝ‖
∫ (j−1)τ

0
|(t − s)Ψ−1|ds,

≤(1 + MCΩj)‖G − G̃‖

(59)

where

Ωj := max
t∈[(j−1)τ,jτ]

∫ t

0
|(t − z)Ψ−1|dz ≤ ∞.

Using (46), we obtain

|Yj(jτ + t)− Ỹj(jτ + t)| ≤ |Zj(jτ + t)− Z̃j(jτ + t)|

+ M
∫ t

0
|(t − s)Ψ−1|max{|Yi(jτ + s)− Ỹi(jτ + s)|, |Yi−1(Θ(s))− Ỹi−1(Θ(jτ + s))|}ds

≤(1 + MCΩj)‖G − G̃‖

+ M
∫ t

0
|(t − s)Ψ−1|max{|Yi(jτ + s)− Ỹi(jτ + s)|, |Yi−1(Θ(jτ + s))− Ỹi−1(Θ(jτ + s))|}ds

(60)

This equation is similar to (47). A similar analysis shows that |Yj(jτ + t)− Ỹj(jτ + t)|
is proportional to ‖G − G̃‖. We need prove this separately for τ in [0, 1], [1, 2], and so
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on. We briefly carry the proof for the case τ ∈ [0, 1], while it is also similar to previous
discussions. From (60), we have

|Yj(jτ + t)− Ỹj(jτ + t)| ≤(1 + MCΩj)‖G − G̃‖

+ M
∫ t

0
|(t − s)ψ∗−1||Yi(jτ + s)− Ỹi(jτ + s)|ds

+ M
∫ t

0
|(t − s)ψ∗−1||Yi−1(Θ(jτ + s))− Ỹi−1(Θ(jτ + s))|}ds

≤(1 + MCΩj +
MCtψ∗

ψ∗ )‖G − G̃‖

+ M
∫ t

0
|(t − s)ψ∗−1||Yi(jτ + s)− Ỹi(jτ + s)|ds

(61)

By applying the generalized Gronwall inequality, we obtain

|Yj(jτ + t)− Ỹj(jτ + t)| ≤ (1 + MCΩj +
MCtψ∗

ψ∗ )Eψ∗(MΓ(ψ∗)tψ∗
)‖G − G̃‖. (62)

This shows that

|Yj(t)− Ỹj(t)| ≤ C4‖G − G̃‖, t ∈ jτ + [0, τ] = [jτ, (j + 1)τ], τ ≤ 1, (63)

where C4 is a finite constant, defined by

C4 = max
t∈[0,1]

(1 + MCΩj +
MCtψ∗

ψ∗ )Eψ∗(MΓ(ψ∗)tψ∗
).

6. Examples and Applications

6.1. Applications in Hopfield Neural Network

An interesting incommensurate system of DFDEs is used in [11] to describe a Hopfield
neural network (HNN). HNNs, a form of recurrent artificial neural network, are particularly
known for their ability to store and retrieve memory patterns efficiently, making them
suitable for numerous practical uses.

In this section, we aim to study the well-posedness of a class of such HNNs. In terms
of our notation, such HNNs can be described by the incommensurate System (6), with

u1(t, Y, W) = −0.1y1 + 1.5 tanh(w3) + 0.8 tanh(w4) + 1.9 tanh(w5),

u2(t, Y, W) = −0.6y2 − 0.6 tanh(w3)− 0.5 tanh(w4) + 2.2 tanh(w5),

u3(t, Y, W) = −0.1y3 − 1.5 tanh(y1) + 2.5 tanh(y2),

u4(t, Y, W) = −0.8y4 + 0.5 tanh(y1)− 0.8 tanh(y2),

u5(t, Y, W) = −1.3y5 + tanh(y1)− 2 tanh(y2).

(64)

The stability of such systems has been studied in [11]. The hyperbolic tangent function
tanh is a Lipschitz continuous function with Lipschitz constant 1. Therefore, the functions
ui for i = 1, . . . , 5 are also Lipschitz continuous with respect to Y and W. Thus, Hypothe-
ses (H1) and (H4) automatically hold. Particularly, L1 = max{0.1, 1.5, 0.8, 1.9} = 1.9,
L2 = max{0.6, 0.5, 2.2} = 2.2, L3 = max{0.1, 1.5, 2.5} = 2.5, L4 = max{0.8, 0.5} = 0.8, and
L5 = max{1.3, 1, 2} = 2. Also, each ui is continuous with respect to its variable, thus
(H2) holds. Assuming that G satisfies (H3), according to Theorem 5, the Hopfield neural
network (64) has a unique mild solution. According to Theorem 8, the solution is Lips-

53



Fractal Fract. 2025, 9, 60

chitz continuous with respect to G, indicating that the Hopfield neural network (64) is
well-posed.

6.2. A General Linear Case

Equation (3) represents a linear incommensurate systems of DFDEs with constant
coefficients. However, this equation can be generalized to the form with variable coefficients
as follows:

DΨY(t) = A(t)Y(t) + B(t)Y(Θ(t)) + F(t) (65)

where A ∈ (C[0,T])ν×ν and B ∈ (C[0,T])ν×ν.
In terms of presentations (7), we have

U(t, Y, W) = A(t)Y + B(t)W + F(t).

Since aij and bij are assumed to be continuous, they are bounded on the compact
interval [0,T]. Therefore,

Li = max
j=1,... ,ν

{max
t∈[a,b]

|aij(t)|, max
t∈[a,b]

|bij(t)|}

is a well-defined real number, and Hypothesis (H4) holds with this Li for all i = 1, . . ., ν.
Consequently, according to Theorems 5 and 8, it has a unique continuous mild solution,
and the solution is Lipschitz continuous with respect to any continuous G. For instance, a
complex system described by

D0.5y1(t) = sin(t)y1(t)− exp(t)y2(t − 0.5) + cos(t),

D0.5y2(t) = cos(t)y1(t)− t2(t)y2(t − 0.5) + |t|,
(66)

with prehistoric conditions

y1(t) = t sin(t), t ∈ (−0.5, 0],

y2(t) = t2 + t + 1, t ∈ (−0.5, 0],
(67)

has a unique solution. This example demonstrates the strength of Theorems 5–8, which im-
poses no further requirements for well-posedness of such systems. Due to the significance
of this example, we add the following corollary for reference in future research.

Corollary 1. Assume A, B, F ∈ (C[0,T])ν×ν, G ∈ (C[−τ, 0])ν×ν, τ,T > 0 and Ψ ∈ (0, 1)ν.

Then, System (65) has a unique mild solution, and is Lipschitz continuous with respect to G on

[0,T].

Proof. The proof is a straightforward conclusion of Theorems 5–8.

7. Conclusions and Remaining Works on This Topic

We have demonstrated that the mild solutions of incommensurate systems for DFDEs
satisfy delay RL integral equations. To ensure well-posedness, we divided the interval into
[0, τ], [τ, 2τ], ..., [(n − 1)τ,T], and transformed studied integral equations into RL integral
equations without delays as described by (46). This decomposition has been utilized
throughout the analysis. Then, we proceed by assuming τ ∈ [0, 1], and extended it for
τ < ∞ in any interval [n, n + 1], through induction. To obtain the existence result, we used
Picard iterations to obtain a sequence of Cauchy continuous functions. We employed the
completeness of the space of continuous functions to establish uniform convergence of
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such Cauchy sequences. Subsequently, we showed that the limit of the Cauchy sequence
satisfies the original RL integral equation. Thus, we have established the existence of a
solution. For uniqueness and stability with respect to G, we applied generalized Gronwall
inequality. The results of this paper can be summarized as follows.

Theorem 9. Assume ψi ∈ (0, 1), G is continuous function on (−τ, 0], limt→−τ G(t) < ∞,

and 0 ≤ τ < ∞. Additionally, assume that U is a continuous vector-valued function and each

component of U is Lipschitz continuous with respect to both the second and third variables. Then,

the incommensurate system of DFDEs (6) with prehistoric condition (5) has a unique solution.

Furthermore, this solution is continuously dependent on G.

While we provided a well-posedness of the problem on the spaces of continuous
functions, there are fundamental questions regarding the need to investigated in dynamic
of the solution. One key question is related to the regularity of the solutions. In terms of
the classical analysis, regularity speaks about the existence and behavior of derivatives of
the solution. Knowledge of the differentiability of the solution is crucial for constructing
efficient numerical solutions. In the context of wider analysis, regularity speaks about
the existence of a solution within a specific space. Studies by Liang and Stynes [21] have
investigated the regularity of a wide class of singular Volterra integral equations of the
second kind in weighted space Cm,α. It is an ongoing area of research related to unified
theories for weakly singular integrals (including logarithm singularity and singularity with
power function), mainly performed in the past three decades by Vainikko and Pedas [22–24].
Recently, in a book published by Brunner [19], the regularity of the solution of a weakly
singular integral equation is studied in detail. Among the related books, this book devotes
a chapter to this topic. We hope to investigate the regularity of DFDEs in future studies.
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Abstract: This paper studies three time-fractional models that arise in plasma physics:
the modified Korteweg–deVries–Zakharov–Kuznetsov equation, the stochastic potential
Korteweg–deVries equation, and the forced Korteweg–deVries equation. These equations
are significant in plasma physics for modeling nonlinear ion acoustic waves and thus
helping us to understand wave dynamics in plasmas. We introduce a new approach that
relies on a new fractional expansion in the natural transform space and residual power
series method to construct analytical solutions to the governing models. We investigate the
theoretical analysis of the proposed method for these equations to expose this approach’s
applicability, efficiency, and effectiveness in constructing analytical solutions to the gov-
erning equations. Moreover, we present a comparative discussion between the solutions
derived during the work and those given in the literature to confirm that the proposed
approach generates analytical solutions that rapidly converge to exact solutions, which
proves the effectiveness of the proposed method.

Keywords: fractional model; plasma physics; Korteweg–deVries equation; natural transform;
residual power series method

1. Introduction

Nonlinear wave phenomena are of fundamental importance in the context of physics
in general and plasma dynamics in particular [1]. A comprehensive understanding of ion
acoustic waves and their behavior is essential for many applications in the context of plasma
physics, such as energy transfer, plasma containment, and wave–particle interactions [2,3].
In light of this, many mathematical models have been presented to describe such phe-
nomena, including the Korteweg–de Vries (KdV) equation [4], the nonlinear Schrödinger
equation [5], Burgers’ equation [6], the Zakharov system [7], the sine-Gordon equation [8],
the Benjamin–Bona–Mahony equation [9], the Kadomtsev–Petviashvili equation [10], and
others. Since the emergence of the concept of fractional differential and integral calculus
and the work carried out by researchers in studying its impact on mathematical sys-
tems in various fields of science, researchers have turned their attention to researching

Fractal Fract. 2025, 9, 152 https://doi.org/10.3390/fractalfract9030152
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the importance of fractional differential and integral calculus in plasma physics [11,12].
It has been shown that fractional calculations have great importance for the effects of
memory and generic properties of systems, which play a prominent role in providing
an accurate description of complex plasma dynamics [13,14]. Considering the long-term
interactions in plasma systems, the fractional derivative provides a more general approach
than classical derivatives, which in turn helps in modeling the wave propagation, diffusion
processes, and anomalous transport phenomena that may not be available in standard
models to capture the complex behavior of plasma [15]. This enables scientists to gain a
deeper understanding of plasma behavior in physical environments and laboratories by
developing fractional mathematical models for ion acoustic waves, plasma turbulence,
and other nonlinear phenomena [16]. The main interest of this work is to study three
important equations in the context of plasma physics: the fractional modified Korteweg–
deVries–Zakharov–Kuznetsov (mKdV-ZK) equation, the fractional stochastic potential
Korteweg–deVries (spKdV) equation, and the fractional forced Korteweg–deVries (FKdV)
equation. We consider the following time-fractional KdV-ZK equation [17]:

Dα
t ψ + μ2ψ

∂ψ

∂x
+

∂3ψ

∂x3 +
∂3ψ

∂x∂y2 +
∂3ψ

∂x∂z2 = 0, t ≥ 0, x, y, z ∈ R, (1.1)

subject to the initial condition:

ψ(x, y, z, 0) = f (x, y, z), x, y, z ∈ R, (1.2)

where Dα
t ψ represents the Caputo derivative of the electric field potential ψ(x, y, z, t) with

respect to the time t of the fractional derivative order α ∈ (0, 1]. The variables x, y and
z are the scaled space coordinates, while μ is the dispersion coefficient that stands for
positive correlation with negative correlation, Boltzmann distribution, and fluid species.
The Korteweg–DeVries–Zakharov–Kuznetsov equation was introduced by the authors [18]
with the aim of using the reductive perturbation approach for mixing both warm adiabatic
fluids and cold stationary isothermal solid background species in a magnetized plasma
where they discussed acoustic electron, acoustic ion, and acoustic dust waves. In Ref. [19],
the mKdV-ZK equation is presented using the reductive perturbation approach to control
the diagonal diffusion in nonlinear electrostatic modes. In Ref. [20], multiple-soliton
solutions for the mKdV-ZK equation were obtained. Solitary solutions were explored using
the modified extended direct algebraic method for the mKdV-ZK equation in Ref. [21].
Younas et al. constructed traveling wave solutions by utilizing two different approaches
to the mKdV-ZK equation [22]. The second equation considered in this work is the time-
fractional spKdV equation [23]:

Dα
t ψ + ω

∂ψ

∂x
+ β

(
∂ψ

∂x

)2

+ γ
∂3ψ

∂x3 = 0, t ≥ 0, x ∈ R, (1.3)

subject to the initial condition:

ψ(x, 0) = g(x), x ∈ R, (1.4)

where ω is the stochastic parameter, β is the nonlinearity coefficient, and γ refers to the
dispersion coefficient. Equation (1.3) is a nonlinear model that appears in applications of
multicomponent plasmas and electrical circuits and is used to predict the weak dispersive
effects on the propagation of nonlinear optical waves and photons. The spKdV equation is
presented in Ref. [23], where the authors obtained lumps, breathers, and multi-soliton solu-
tions using the simplified Hirota method and the Cole–Hopf transformation. In Ref. [24],
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the authors suggested the fractional spKdV equation and they constructed closed-form
solutions for the proposed model. In Ref. [25], the spKdV equation was investigated and
the Lie symmetry approach was utilized to carry out the symmetry generators to obtain
traveling wave solutions and conservation laws for the proposed model. The final equation
that will be investigated in our paper is the following fractional FKdV equation [26]:

1
c
Dα

t ψ +

(
(Fr − 1)− 3

2χ
ψ

)
∂ψ

∂x
− χ2

6
∂3ψ

∂x3 =
1
2

dφ(x)

dx
, t ≥ 0, x ∈ R, (1.5)

subject to the initial condition:

ψ(x, 0) = h(x), x ∈ R. (1.6)

The term
(
(Fr − 1)− 3

2χ ψ
)

∂ψ
∂x describes nonlinear interactions in a wave that are

measured using the parameter χ which arises from the amplitude of the plasma wave
where higher amplitudes affect the wave velocity. The parameter Fr represents some
force or property of the plasma. The term 1

2
dφ(x)

dx represents an external influence on
the plasma wave such as an electric or magnetic field or any other disturbance. The
importance of Equation (1.5) lies in allowing the integration of external forces, memory
effects, nonlinearity, and dispersion to model the propagation of nonlinear ion-acoustic
waves, as these components are necessary to accurately describe the wave behavior in
plasma environments. This model is of great value in many contexts such as astrophysical
plasmas affected by large-scale forces, fusion plasmas affected by electric and magnetic
fields, and the study of stability and turbulence in plasma systems. In Ref. [26], the authors
investigated the fractional FKdV equation to construct traveling wave solutions using
the fractional natural decomposition method. The distributed-order time-fractional FKdV
equation is presented in Ref. [27], where the authors used the shifted Legendre operational
matrix to infer approximate solutions for the proposed model. In Ref. [28], the authors
studied the FKdV equation and obtained approximate solutions for the model using the q-
homotopy analysis transform technique. The fractional FKdV equation was discussed with
the help of the Yang homotopy perturbation method and the Yang transform decomposition
method to construct approximate solutions for the model in Ref. [29].

With the wide development in scientific research regarding mathematical systems that
describe and model physical phenomena and the emergence and discovery of complex
systems in various fields of science, the need to develop methods to derive accurate and
approximate solutions for these presented systems arose. Researchers worked to develop
such techniques, including the reproducing kernel Hilbert space method [30], the multi-
step reduced differential transformation method [31], the Atangana–Baleanu fractional
framework for the reproducing kernel technique [32], the multistep generalized differential
transform method [33], the homotopy analysis method [34], the shifted Jacobi polynomials
method [35], the Chebyshev polynomials method [36], auxiliary equation method [37],
the B-spline schemes method [38], the fractional variational iteration method [39–41], the
Kudryashov method [42], and others. Abu Arqub et al. [43] presented a new analytical
method, the residual power series (RPS) method, for obtaining solitary wave solutions of
time-fractional dispersive partial differential equations based on the generalized Taylor
series formula and residual error function. Researchers have employed this method to
derive analytical solutions for a wide range of fractional equations as it is an effective
method [44,45]. In Ref. [46], El-Ajou proposed a new technique that combines the Laplace
transform and RPS method, called the Laplace residual power series (LRPS) method, where
the proposed method was utilized to explore exact solitary solutions to the nonlinear
time-fractional dispersive partial differential equations (PDEs). The main goal of this work
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is to suggest a new attractive approach, the natural residual power series (NRPS) method,
that depends on the natural transformation and RPS method. Moreover, we seek to utilize
the NRPS method to infer analytical solutions for the governing Equations (1.1)–(1.6). The
NRPS method is based on using natural transformation to transform the time-fractional
differential equation into the natural space, then using a suitable expansion to deal with the
newly obtained equation together with the RPS method, which in turn helps in deducing
the expansion coefficients based on the concept of limit, which reduces the calculations
required to reach accurate approximate solutions to the governing equation.

We organized the paper with the introduction as the first section. Section 2 presents
some preliminaries about the Caputo fractional derivative. Section 3 is devoted to intro-
ducing the definition of natural transformation and investigating its essential properties,
then presenting the natural fractional expansion. In Section 4, we introduce the steps of the
proposed method. Applications of the NRPS method to construct approximate solutions
for the governing models are introduced in Section 5. Some conclusions are presented in
Section 6.

2. Preliminaries

Since the advent of fractional calculus, many fractional operators have appeared,
such as the Riemann–Liouville operator [47], the Caputo operator [48], Atangana–Baleanu
operator [49], and others. Here, we present the definition of the Caputo fractional derivative
and some of its essential properties that are useful in our work.

Definition 1 ([49]). The Caputo derivative of fractional order α > 0 of an integrable function ψ(t)

is given by:

Dα
t ψ(t, x) =

1
Γ(k − α)

t∫

0

∂kψ(τ,x)
∂τk

(t − τ)α−k+1
dτ, (2.1)

where t ≥ 0, k = [α] + 1. The Riemann–Liouville fractional integral of order α, Re(α) > 0 is

given by:

J α
t ψ(t) =

1
Γ(α)

t∫

0

(t − τ)α−1ψ(τ, x)dτ. (2.2)

Lemma 1 ([49]). For α > 0, η > −1, p ∈ R and t ≥ 0, the Caputo fractional derivative has

the property:

(a) Dα
t p = 0. (2.3)

(b) Dα
t tη =

Γ(η + 1)
Γ(η + 1 − α)

tη−α. (2.4)

(c) Dα
t J α

t ψ(t, x) = ψ(t, x). (2.5)

(d) J α
t Dα

t ψ(t, x) = ψ(t, x)−
k−1
∑

i=0

∂iψ(0+, x)

∂ti

ti

i!
. (2.6)

3. Natural Transformation and Fractional Expansion

The natural transformation combines the features of the Laplace and the Sumudu
transforms into a powerful tool for dealing with a variety of differential and integral
equations. Natural transformation provides a simple and flexible approach to transforming
functions from the time domain to the complex domain, making it powerful for dealing
with problems involving fractional time models. Furthermore, the natural transform can
handle a wide range of functions with singularities and simplifies the process of finding
analytical solutions to complex problems. Therefore, it is considered a valuable tool widely
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used in applied mathematics, engineering, and physics [50–54]. The general integral
transform of the function ψ(t, x), t, x ∈ R is defined as:

T {ψ(t, x)} =

∞∫

−∞

K(s, t)ψ(t, x)dt, (3.1)

where K(s, t) is the kernel of the transform and s represents the real (complex) number
that is independent of t. The Laplace transform, Mellin transform, and Hankel transform
can be obtained by letting the kernel of the transform in (3.1) be: e−st, ts−1(st), and tJn(st),
respectively. To define the natural transformation, we define the following set:

C =

{
ψ(t, x) : ∃ B, σ1, σ2, |ψ(t, x)| < Be

( |t|σi
)
, t ∈ (−1)i × [0, ∞), x ∈ A ⊆ R, i ∈ Z

+

}
(3.2)

Definition 2 ([51]). Let ψ(t, x) ∈ C. The natural transformation of the function ψ(t, x) is

defined as:

Ψ(s, w, x) = N{ψ(t, x)} =

∞∫

0

e−stψ(wt, x)dt, s, w ∈ (0, ∞), (3.3)

where N{ψ(t, x)} is the natural transformation of ψ(t, x) and the variables s and w are the

natural transform variables. The inverse natural transformation of the function Ψ(s, w, x) is defined

as follows:

ψ(t, x) = N−1{Ψ(s, w, x)} =
1

2πi

u+i∞∫

u−i∞

e−
st
w Ψ(s, w, x)ds, t ∈ [0, ∞), (3.4)

where the integral is applied for a complex number s = a + ib along s = u.
The following theorem shows the existence of natural transformations.

Theorem 1 ([51]). Let ψ(t, x) ∈ C be piecewise continuous on [0, ∞)× A and of an exponential or-

der θ
w as t → ∞ . Then, the natural transformation of ψ(t, x) exists for all s ∈ (θ, ∞), w ∈ (0, ∞).

Remark 1. The Laplace and Sumudu transforms can be obtained by letting w = 1 and s = 1,

respectively, in the natural transform (3.3).

Remark 2. Let Ψ(s, w, x) = N{ψ(t, x)} be the natural transform of the function and let

ΨL(s, x) = L{ψ(t, x)} =

∞∫

0

e−stψ(t, x)dt,

ΨS(w, x) = S{ψ(t, x)} =

∞∫

0

e−tψ(wt, x)dt,

be the Laplace and Sumudu transforms of the function ψ(t, x), respectively. Then, the duality

relationship between the Natural-Laplace and Natural-Sumudu transforms is given by:

N{ψ(t, x)} = Ψ(s, w, x) =
1
w

ΨL

( s

w
, x
)

, (3.5)

N{ψ(t, x)} = Ψ(s, w, x) =
1
s

ΨS

(w

s
, x
)

. (3.6)
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Lemma 2 ([52]). Let ψ1(t, x), ψ2(t, x) ∈ C be piecewise continuous on [0, ∞) × A and of an

exponential order θ1
w and θ2

w , respectively, with θ1 < θ2. Then, the natural transform satisfies the

following properties:

(i) N (1) = 1
s . (3.7)

(ii) N
(

tkη
)
= Γ(kη+1)wkη

skη+1 , η > −1. (3.8)

(iii) N (p1ψ1(t, x) + p2ψ2(t, x)) = p1Ψ1(s, w, x) + p2Ψ2(s, w, x), p1, p2 ∈ R. (3.9)
(iv) N−1(p1Ψ1(s, w, x) + p2Ψ2(s, w, x)) = p1ψ1(t, x) + p2ψ1(t, x), p1, p2 ∈ R. (3.10)

Lemma 3. Let ψ(t, x) ∈ C be piecewise continuous on [0, ∞)× A and of exponential order θ
w .

Then, the natural transform satisfies the following properties:

(i) N
{

∂k

∂tk
ψ(t, x)

}
=

sk

wk
Ψ(s, w, x)−

k−1
∑

i=0

sk−i−1

wk−i

∂i

∂ti
ψ(0, x), k ∈ Z. (3.11)

(ii) lim
s→∞

sΨ(s, w, x) = ψ(0, x). (3.12)

(iii) N{Dα
t ψ(t, x)} =

sα

wα
Ψ(s, w, x)− sα−1

wα
ψ(0, x), 0 < α < 1. (3.13)

(iv) N
{
Dkα

t ψ(t, x)
}
=

skα

wkα
Ψ(s, w, x)−

k−1
∑

i=0

s(k−i)α−1

w(k−i)α
Diα

t ψ(0, x), 0 < α < 1. (3.14)

where Dkα
t = Dα

t Dα
t . . .Dα

t ( k-times).

Proof. The properties (i) can be found in Ref. [48]. To prove (ii), we use the property (i) at
k = 1, we obtain:

N
{

∂

∂t
ψ(t, x)

}
=

s

w
Ψ(s, w, x)− 1

w
ψ(0, x). (3.15)

Which gives:

sΨ(s, w, x) = w

∞∫

−∞

e−st ∂

∂t
ψ(wt, x)dt + ψ(0, x). (3.16)

Taking the limit for both sides of (3.16) as s → ∞ to obtain the property (ii). To prove
(iii), we use the following fact for the Sumudu transform for the Caputo fractional derivative:

Ψ∗
S(w, x) = S{Dα

t ψ(t, x)} =
1

wα
(ΨS(w, x)− ψ(0, x)). (3.17)

Substitute w = w
s in (3.17) to obtain:

Ψ∗
S

(w

s
, x
)
=

sα

wα

(
ΨS

(w

s
, x
)
− ψ(0, x)

)
. (3.18)

Multiply (3.18) by 1
s , we have:

1
s

Ψ∗
S

(w

s
, x
)
=

sα

wα

1
s

ΨS

(w

s
, x
)
− sα−1

wα
ψ(0, x). (3.19)

Therefore, using the relationship (3.6) to obtain the property (iii):

N{Dα
t ψ(t, x)} =

sα

wα
Ψ(s, w, x)− sα−1

wα
ψ(0, x). (3.20)
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We use mathematical induction to verify the property (iv). For k = 1, the property is
proved in (iii). We assume the formula is satisfied at k = n, then we have:

N{Dnα
t ψ(t, x)} =

snα

wnα
Ψ(s, w, x)−

n−1

∑
i=0

s(n−i)α−1

w(n−i)α
Diα

t ψ(0, x). (3.21)

We seek to verify it at k = n + 1. Now,

N
{
D(n+1)α

t ψ(t, x)
}
= N{Dα

t (Dnα
t ψ(t, x))} = N{Dα

t φ(t, x)}, (3.22)

where φ(t, x) = Dnα
t ψ(t, x). Using (iii), we obtain:

N{Dα
t φ(t, x)} =

sα

wα
N{Dnα

t ψ(t, x)} − sα−1

wα
Dnα

t ψ(0, x). (3.23)

Using (3.21) into (3.23) to infer:

N{Dα
t φ(t, x)} =

sα

wα

(
snα

wnα
Ψ(s, w, x)−

n−1
∑

i=0

s(n−i)α−1

w(n−i)α
Diα

t ψ(0, x)

)
− sα−1

wα
Dnα

t ψ(0, x)

=
s(n+1)α

w(n+1)α
Ψ(s, w, x)−

n−1
∑

i=0

s(n+1−i)α−1

w(n+1−i)α
Diα

t ψ(0, x)− sα−1

wα
Dnα

t ψ(0, x)

=
s(n+1)α

w(n+1)α
Ψ(s, w, x)−

n

∑
i=0

s(n+1−i)α−1

w(n+1−i)α
Diα

t ψ(0, x).

(3.24)

From (3.22) and (3.24), we obtain:

N
{
D(n+1)α

t ψ(t, x)
}
=

s(n+1)α

w(n+1)α
Ψ(s, w, x)−

n

∑
i=0

s(n+1−i)α−1

w(n+1−i)α
Diα

t ψ(0, x). (3.25)

Therefore, the poof is complete. �

The next theorem presents a new fractional expansion which is essential for our
proposed method, the NRPS method.

Theorem 2. Let ψ(t, x) ∈ C be piecewise continuous on [0, ∞)× A and of an exponential order θ
w ,

and let Ψ(s, w, x) = N{ψ(t, x)} have the following fractional expansion:

Ψ(s, w, x) =
∞

∑
k=0

Πk(x)wkα

s1+kα
, α ∈ (0, 1], x ∈ A, s ∈ (θ, ∞), w ∈ (0, ∞). (3.26)

Then, the coefficients Πk(x) = Dkα
t ψ(0, x), k = 0, 1, 2, . . .. Consequently, ψ(t, x) can be

written in the following fractional Taylor’s formula:

ψ(t, x) =
∞

∑
k=0

Dkα
t ψ(0, x)tkα

Γ(1 + kα)
, α ∈ (0, 1], x ∈ R, t ∈ (0, ∞). (3.27)

Proof. Assume that Ψ(s, w, x) has the fractional expansion in (3.26). Multiply both sides of
(3.26) by s, then take the limit as s → ∞ to obtain:

lim
s→∞

sΨ(s, w, x) = lim
s→∞

s
∞

∑
k=0

Πk(x)wkα

s1+kα
= lim

s→∞

(
Π0(x) +

∞

∑
k=1

Πk(x)wkα

skα

)
= Π0(x).
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Using (3.12), it is possible to obtain Π0(x) = ψ(0, x). Hence, we can write the fractional
expansion (3.26) in the form:

Ψ(s, w, x) =
ψ(0, x)

s
+

∞

∑
k=1

Πk(x)wkα

s1+kα
, α ∈ (0, 1], x ∈ R, s ∈ (θ, ∞), w ∈ (0, ∞). (3.28)

Now, multiply both sides of (3.28) by sα+1 to obtain:

sα+1Ψ(s, w, x) = sαψ(0, x) + Π1(x)wα +
∞

∑
k=2

Πk(x)wkα

s(k−1)α
. (3.29)

Consequently, with the aid of (3.13), we have:

Π1(x) =
sα+1

wα
Ψ(s, w, x)− sα

wα
ψ(0, x)−

∞

∑
k=2

Πk(x)w(k−1)α

s(k−1)α

= s

(
sα

wα
Ψ(s, w, x)− sα−1

wα
ψ(0, x)

)
−

∞

∑
k=2

Πk(x)w(k−1)α

s(k−1)α

= sN{Dα
t ψ(t, x)} −

∞

∑
k=2

Πk(x)w(k−1)α

s(k−1)α
.

(3.30)

Take the limit as s → ∞ for both sides of (3.30) with the aid of (3.12) to infer:

Π1(x) = lim
s→∞

sN{Dα
t ψ(t, x)} = Dα

t ψ(0, x). (3.31)

To find Π2(x), multiply both sides of (3.28) by s2α+1 to obtain:

s2α+1Ψ(s, w, x) = s2αψ(0, x) + sαΠ1(x)wα + Π2(x)w2α +
∞

∑
k=3

Πk(x)wkα

s(k−2)α
. (3.32)

Thus, using (3.31) and (3.14), we infer:

Π2(x) =
s2α+1

w2α
Ψ(s, w, x)− s2α

w2α
ψ(0, x)− sαΠ1(x)

wα
−

∞

∑
k=3

Πk(x)w(k−2)α

s(k−2)α

= s

(
s2α

w2α
Ψ(s, w, x)− s2α−1

w2α
ψ(0, x)− sα−1Dα

t ψ(0, x)

wα

)
−

∞

∑
k=3

Πk(x)w(k−2)α

s(k−2)α

= sN
{
D2α

t ψ(t, x)
}
−

∞

∑
k=3

Πk(x)w(k−2)α

s(k−2)α
.

(3.33)

Take the limit as s → ∞ for both sides of (3.33) with the aid of (3.12) to obtain:

Π2(x) = lim
s→∞

sN
{
D2α

t ψ(t, x)
}
= D2α

t ψ(0, x). (3.34)

Now, we use the induction to complete the proof. Then, assume that
Πk(x) = Dkα

t ψ(0, x), k = 0, 1, 2, . . . , n. Then, the fractional expansion (3.28) can be
written as:

Ψ(s, w, x) =
ψ(0, x)

s
+

n

∑
k=1

Dkα
t ψ(0, x)wkα

s1+kα
+

Πn+1(x)w(n+1)α

s1+(n+1)α
+

∞

∑
k=n+2

Πk(x)wkα

s1+kα
. (3.35)

To find the coefficient Πn+1(x), we multiply both sides of (3.35) by s(n+1)α+1,
one has:
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s(n+1)α+1Ψ(s, w, x)

= s(n+1)αψ(0, x) +
n

∑
k=1

Dkα
t ψ(0, x)wkα

s(k−n−1)α
+ Πn+1(x)w(n+1)α

+
∞

∑
k=n+2

Πk(x)wkα

s(k−n−1)α
.

(3.36)

Consequently, with the aid of (3.14), we obtain:

Πn+1(x) =
s(n+1)α+1

w(n+1)α
Ψ(s, w, x)− s(n+1)α

w(n+1)α
ψ(0, x)−

n
∑

k=1

Dkα
t ψ(0, x)s(n+1−k)α

w(n+1−k)α
−

∞

∑
k=n+2

Πk(x)w(k−n−1)α

s(k−n−1)α

= s

(
s(n+1)α

w(n+1)α
Ψ(s, w, x)− s(n+1)α−1

w(n+1)α
ψ(0, x)−

n
∑

k=1

Dkα
t ψ(0, x)s(n+1−k)α−1

w(n+1−k)α

)

−
∞

∑
k=n+2

Πk(x)w(k−n−1)α

s(k−n−1)α
= sN

{
D(n+1)α

t ψ(t, x)
}
−

∞

∑
k=n+2

Πk(x)w(k−n−1)α

s(k−n−1)α
.

(3.37)

Take the limit as s → ∞ for both sides of (3.37) with the aid of (3.12) to obtain:

Πn+1(x) = lim
s→∞

sN
{
D(n+1)α

t ψ(t, x)
}
= D(n+1)α

t ψ(0, x). (3.38)

Which prove that Πk(x) = Dkα
t ψ(0, x), k = 0, 1, 2, . . . .. Hence, the function Ψ(s, w, x)

can be written as:

Ψ(s, w, x) =
∞

∑
k=0

Dkα
t ψ(0, x)wkα

s1+kα
, α ∈ (0, 1], x ∈ A, s ∈ (θ, ∞), w ∈ (0, ∞). (3.39)

Take the inverse natural transform of (3.39) with the aid of (3.8) to obtain:

ψ(t, x) =
∞

∑
k=0

Dkα
t ψ(0, x)tkα

Γ(1 + kα)
, α ∈ (0, 1], x ∈ R, t ∈ (0, ∞). (3.40)

Which completes the proof. �

We are now going to prove that the fractional expansion for Ψ(s, w, x) in (3.26) con-
verges under certain conditions.

Theorem 3. Let ψ(t, x) ∈ C be piecewise continuous on [0, ∞)× A and of an exponential order
θ
w , and let Ψ(s, w, x) = N{ψ(t, x)} have the fractional expansion (3.26). Then, the reminder

RK(s, w, x) of (3.26) is satisfied:

|RK(s, w, x)| ≤ w(K+1)α

s(K+1)α+1
M(x), α ∈ (0, 1], x ∈ A, s ∈ (θ, θ∗], w ∈ (0, ∞), (3.41)

provided that:

∣∣∣sN
{
D(K+1)α

t ψ(t, x)
}∣∣∣ ≤ M(x), α ∈ (0, 1], x ∈ A, s ∈ (θ, θ∗], w ∈ (0, ∞). (3.42)

Proof. The reminder Rk(s, w, x) of the fractional expansion (3.26) can be written as:

RK(s, w, x) = Ψ(s, w, x)−
K
∑
k=0

Dkα
t ψ(0, x)wkα

s1+kα
. (3.43)
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Multiply both sides of (3.43) by s(K+1)α+1

w(K+1)α ; with the aid of (3.14) we obtain:

s(K+1)α+1

w(K+1)α
RK(s, w, x) =

s(K+1)α+1

w(K+1)α
Ψ(s, w, x)−

K
∑

k=0

Dkα
t ψ(0, x)s(K+1−k)α

w(K+1−k)α

= s

(
s(K+1)α

w(K+1)α
Ψ(s, w, x)−

K
∑

k=0

Dkα
t ψ(0, x)s(K+1−k)α−1

w(K+1−k)α

)

= sN
{
D(K+1)α

t ψ(t, x)
}

.

(3.44)

Using (3.42) and (3.44), we obtain the result in (3.41). �

4. A Description of the Proposed NRPS Method

This section is devoted to presenting the NRPS method to establish approximate
solutions to the nonlinear fractional PDE:

Dα
t ψ(t, x) = Gx[ψ(t, x)], α ∈ (0, 1], x ∈ A, t ≥ 0, (4.1)

with the initial condition:
ψ(0, x) = g(x), x ∈ A. (4.2)

The symbol Gx denotes a nonlinear operator relative to the x of degree r, x ∈ A, t ≥ 0,
Dα

t refers to the α-th Caputo fractional derivative for α ∈ (0, 1], and ψ(t, x) is an unknown
function to be determined. To obtain the desired analytical solution for (4.1)–(4.2) using the
NRPS method, we can perform the following steps:

Step 1. Apply the natural transformation for both sides of (4.1) by taking advantage of
the facts in Lemmas 2 and 3, we obtain:

Ψ(s, w, x)− 1
s

g(x)− wα

sα
N
{
Gx

[
N−1{Ψ(s, w, x)}

]}
= 0, α ∈ (0, 1], x ∈ A, s ∈ (θ, ∞), w ∈ (0, ∞), (4.3)

where Ψ(s, w, x) = N{ψ(t, x), x ∈ A, s ∈ (θ, ∞), w ∈ (0, ∞) .
Step 2. Suppose that the solution of (4.3) can be written in the following expansion:

Ψ(s, w, x) =
∞

∑
k=0

Πk(x)wkα

s1+kα
, α ∈ (0, 1], x ∈ A, s ∈ (θ, ∞), w ∈ (0, ∞). (4.4)

Define the Kth truncated series of Ψ(s, w, x) as:

ΨK(s, w, x) =
K
∑
k=0

Πk(x)wkα

s1+kα
, α ∈ (0, 1], x ∈ A, s ∈ (θ, ∞), w ∈ (0, ∞). (4.5)

Using the results in Theorem 2, we deduce that the initial guess Π0(x) = g(x). Upon
this fact, we write the Kth truncated series of Ψ(s, w, x) as:

ΨK(s, w, x) =
g(x)

s
+

K
∑
k=1

Πk(x)wkα

s1+kα
, α ∈ (0, 1], x ∈ A, s ∈ (θ, ∞), w ∈ (0, ∞). (4.6)

Step 3. We define the so-called natural residual function (NRF) as:

N Res(s, w, x) = Ψ(s, w, x)− 1
s g(x)− wα

sα N
{
Gx

[
N−1{Ψ(s, w, x)}

]}
, α

∈ (0, 1], x ∈ A, s ∈ (θ, ∞), w ∈ (0, ∞),
(4.7)
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and the Kth truncated NRF as:

N ResK(s, w, x) = ΨK(s, w, x)− 1
s g(x)− wα

sα N
{
Gx

[
N−1{ΨK(s, w, x)}

]}
, α

∈ (0, 1], x ∈ A, s ∈ (θ, ∞), w ∈ (0, ∞),
(4.8)

Now, we introduce some essential facts to obtain the desired coefficients Πk(x) in the
expansion (4.6).

Remark 3. The NRF and the Kth truncated NRF in (4.7) and (4.8), respectively, satisfy the

following properties:

(i) N Res(s, w, x) = 0, x ∈ A, s ∈ (θ, ∞), w ∈ (0, ∞). (4.9)
(ii) lim

k→∞
N ResK(s, w, x) = N Res(s, w, x), x ∈ A, s ∈ (θ, ∞), w ∈ (0, ∞). (4.10)

(iii) lim
s→∞

s1+KαN ResK(s, w, x) = 0, K = 1, 2, . . . , x ∈ A, s ∈ (θ, ∞), w ∈ (0, ∞). (4.11)

Proof. The properties (i) and (ii) are clear. To prove (iii), we represent the NRF (4.7) in
fractional expansion as:

N Res(s, w, x) =
∞

∑
k=1

(
Πk(x)−G(k)

x [Πi(x)]
)

wkα

s1+kα , α ∈ (0, 1], x ∈ A, s ∈ (θ, ∞), w

∈ (0, ∞), i ∈ {0, 1, 2, . . . , k − 1},
(4.12)

where G (k)
x , k = 1, 2, 3, . . . are differential operators related to the x of de-

gree r. Using (4.9), we obtain Πk(x) − G (k)
x [Πi(x)] = 0 for k = 1, 2, 3, . . . and

i ∈ {0, 1, 2, . . . , k − 1}. Substitute the Kth truncated series ΨK(s, w, x) into (4.12) that
can be written in the following expression:

N ResK(s, w, x) =
K
∑
k=1

(
Πk(x)− G(k)

x [Πi(x)]
)

wkα

s1+kα
+

Kr+1

∑
k=K+1

(
Πk(x)− G∗(Kk)

x

[
Πj(x)

])
wkα

s1+kα
, (4.13)

where i ∈ {0, 1, 2, . . . , k − 1}, j ∈ {0, 1, 2, . . . ,K}, and G*(Kk)
x , k = K + 1,K + 2, . . . ,Kr + 1

are differential operators related to x and Πk(x)− G*(Kk)
x

[
Πj(x)

]
�= 0. By multiplying both

sides of (4.13) by s1+kα and taking the limit as s → ∞ , we obtain:

lim
s→∞

s1+kαN Resk(s, w, x) =
(

Πk(x)− G(k)
x [Πi(x)]

)
wkα = 0, k = 1, 2, . . . , i

∈ {0, 1, 2, . . . , k − 1}.
(4.14)

Step 4. Substitute the Kth truncated series ΨK(s, w, x) in (4.6) into the Kth truncated
NRF (4.8).

Step 5. To determine the coefficients Πk(x), k = 1, 2, . . . ,K, we solve the system that
was obtained using lim

s→∞
s1+kαN Resk(s, w, x) = 0, k = 1, 2, . . . ,K and collect the results into

the Kth truncated series ΨK(s, w, x) in (4.6).
Step 6. Apply the inverse natural operator for both sides of the inferred Kth truncated

series ΨK(s, w, x) to obtain the Kth approximate solution for the nonlinear fractional
PDE (4.1). �
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5. Applications

In this section, we investigate the time-fractional KdV-ZK Equations (1.1) and (1.2), the
time-fractional spKdV Equations (1.3) and (1.4), and the fractional FKdV E
quations (1.5) and (1.6) using the proposed NRPS method. We used the mathematical
software package Mathematica 13 to implement all symbolic and numerical computations.

Application 1. Consider the time-fractional KdV-ZK equation [17]:

Dα
t ψ + 36ψ

∂ψ

∂x
+

∂3ψ

∂x3 +
∂3ψ

∂x∂y2 +
∂3ψ

∂x∂z2 = 0, t ≥ 0, x, y, z ∈ R, (5.1)

subject to the initial condition:

ψ(0, x, y, z) =
1√
2

sech(x + y + z), x, y, z ∈ R. (5.2)

Apply the natural transformation for both sides of (5.1) with the aid of (3.13) to obtain:

sα

wα Ψ(s, w, x, y, z)− sα−1

wα ψ(0, x, y, z) + 36N
{
N−1{Ψ(s, w, x, y, z)} ∂

∂xN−1{Ψ(s, w, x, y, z)}
}

+N
{

∂3

∂x3N−1{Ψ(s, w, x, y, z)}
}
+N

{
∂3

∂x∂y2N−1{Ψ(s, w, x, y, z)}
}

+N
{

∂3

∂x∂z2N−1{Ψ(s, w, x, y, z)}
}
= 0,

(5.3)

where Ψ(s, w, x, y, z) = N{ψ(t, x, y, z)}. Using (5.2) in (5.3), we obtain:

Ψ(s, w, x, y, z)− 1
s
√

2
sech(x + y + z)

+wα

sα

(
36N

{
N−1{Ψ(s, w, x, y, z)} ∂

∂xN−1{Ψ(s, w, x, y, z)}
}

+N
{

∂3

∂x3 N−1{Ψ(s, w, x, y, z)}
}

+N
{

∂3

∂x∂y2 N−1{Ψ(s, w, x, y, z)}
}

+N
{

∂3

∂x∂z2 N−1{Ψ(s, w, x, y, z)}
})

= 0,

(5.4)

Suppose that the solution of (5.4) can be written in the following expansion:

Ψ(s, w, x, y, z) =
∞

∑
k=0

Πk(x, y, z)wkα

s1+kα
, α ∈ (0, 1], x, y, z ∈ A, s ∈ (θ, ∞), w ∈ (0, ∞). (5.5)

Define the Kth truncated series of Ψ(s, w, x, y, z) as:

ΨK(s, w, x, y, z) =
K
∑
k=0

Πk(x, y, z)wkα

s1+kα
, α ∈ (0, 1], x, y, z ∈ A, s ∈ (θ, ∞), w ∈ (0, ∞). (5.6)

Using the results in Theorem 2, we deduce that the initial guess

Π0(x, y, z) =
√

1
2 sech((x + y + z)). Upon this fact, we write the Kth truncated series of

Ψ(s, w, x, y, z) as:

ΨK(s, w, x, y, z) =
1

s
√

2
sech(x + y + z) +

K
∑
k=1

Πk(x, y, z)wkα

s1+kα
. (5.7)
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We define the NRF as:

N Res(s, w, x, y, z)

= Ψ(s, w, x, y, z)− 1
s
√

2
sech(x + y + z)

+wα

sα

(
36N

{
N−1{Ψ(s, w, x, y, z)} ∂

∂xN−1{Ψ(s, w, x, y, z)}
}

+N
{

∂3

∂x3 N−1{Ψ(s, w, x, y, z)}
}

+N
{

∂3

∂x∂y2 N−1{Ψ(s, w, x, y, z)}
}

+N
{

∂3

∂x∂z2 N−1{Ψ(s, w, x, y, z)}
})

,

(5.8)

and the Kth truncated NRF as:

N ResK(s, w, x, y, z)

= ΨK(s, w, x, y, z)− 1
s
√

2
sech(x + y + z)

+wα

sα

(
36N

{
N−1{ΨK(s, w, x, y, z)} ∂

∂xN−1{ΨK(s, w, x, y, z)}
}

+N
{

∂3

∂x3 N−1{ΨK(s, w, x, y, z)}
}

+N
{

∂3

∂x∂y2 N−1{ΨK(s, w, x, y, z)}
}

+N
{

∂3

∂x∂z2 N−1{ΨK(s, w, x, y, z)}
})

.

(5.9)

For K = 1, we obtain the 1st NRF with using (5.7) as follows:

N Res1(s, w, x, y, z)

= Π1(x,y,z)wα

s1+α

+wα

sα

(
36N

{
N−1

{
1

s
√

2
sech(x + y + z) +

Π1(x,y,z)wα

s1+α

}
∂

∂xN−1
{

1
s
√

2
sech(x + y + z)

+Π1(x,y,z)wα

s1+α

}
}+N

{
∂3

∂x3 N−1
{

1
s
√

2
sech(x + y + z) +

Π1(x,y,z)wα

s1+α

}}

+N
{

∂3

∂x∂y2 N−1
{

1
s
√

2
sech(x + y + z) +

Π1(x,y,z)wα

s1+α

}}

+N
{

∂3

∂x∂z2 N−1
{

1
s
√

2
sech(x + y + z) +

Π1(x,y,z)wα

s1+α

}}
).

(5.10)

By multiplying both sides of (5.10) by s1+α and using lim
s→∞

s1+αN Res1(s, w, x) = 0,

we obtain:

Π1(x, y, z) = 3
√

3sech(x + y + z)tanh(x + y + z). (5.11)

Similarly, we can obtain the following:

Π2(x, y, z) =
9
2

√
3(−3 + cosh(2(x + y + z)))sech(x + y + z)3. (5.12)

Π3(x, y, z) =
27
4

√
3sech(x + y + z)4(−23sinh(x + y + z) + sinh(3(x + y + z))). (5.13)

Π4(x, y, z) =
81
√

3
8

(115 − 76cosh(2(x + y + z)) + cosh(4(x + y + z)))sech(x + y + z)5. (5.14)

The CPU time that is needed to obtain these results (5.11)–(5.14) was 35.390625 s. Substitute

(5.11)–(5.14) into (5.7) to obtain the Kth truncated series of Ψ(s, w, x) as:

ΨK(s, w, x, y, z) = 1
s
√

2
sech(x + y + z) +

Π1(x,y,z)wα

s1+α + Π2(x,y,z)w2α

s1+2α

+Π3(x,y,z)w3α

s1+3α + Π4(x,y,z)w4α

s1+4α + . . . + ΠK(x,y,z)wKα

s1+Kα .
(5.15)

Apply the inverse natural operator of (5.15) to obtain the Kth NRPS solution for the time-

fractional KdV-ZK equation as:
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ψK(t, x, y, z) = 1√
2

sech(x + y + z) +
Π1(x,y,z)tα

Γ(1+α)
+ Π2(x,y,z)t2α

Γ(1+2α)

+Π3(x,y,z)t3α

Γ(1+3α)
+ Π4(x,y,z)t4α

Γ(1+4α)
+ . . . + ΠK(x,y,z)tKα

Γ(1+Kα)
.

(5.16)

We present a numerical simulation of the results obtained. We assume that y = z = 0.
Table 1 compares the exact solution for the time-fractional KdV-ZK Equation (5.1) and the
inferred fourth NRPS solution (5.16) where the absolute and relative errors are presented.
Figure 1 presents the absolute error between the exact solution and the explored approx-
imate fourth NRPS solution (5.16) for the time-fractional KdV-ZK Equation (5.1). To our
knowledge, no works in the literature have been presented to deduce approximate solutions
to Equation (5.1). Still, all the works presented are concerned with deriving exact solutions
to the equation. From Table 1 and Figure 1, we can see the convergence of the numerical
solutions derived through the proposed method with the exact solutions, which provides
insight into the high accuracy of the proposed method. Figure 2 shows the surfaces of the
exact and the fourth NRPS solutions (5.16) at α = 1. Figure 3 presents the fourth NRPS
solution (5.16) surfaces at different fractional orders α = 0.95 and α = 0.9 to demonstrate
the effect of the fractional derivative on the established surfaces. For more explanation, we
depicted, in Figures 4–6, the NRPS solutions explored in 2D plots at different fractional
orders α where the time t is considered at various values.

Table 1. A comparison between the exact solution and the NRPS solution for the time-fractional
KdV-ZK equation.

x t Exact Solution NRPS Solution Absolute Error Relative Error CPU Time

−1

0.0
0.1
0.2
0.3

1.122462928047994
0.878805774963547
0.671997937091220
0.506783751732631

1.122462928047995
0.878736016940593
0.669464247695219
0.486544390701797

2.220446 × 10−16

6.975802 × 10−5

2.533689 × 10−3

2.023936 × 10−2

1.978190 × 10−16

7.937820 × 10−5

3.770382 × 10−3

3.993687 × 10−2

0.015625

0

0.0
0.1
0.2
0.3

1.732050807568877
1.656928147349753
1.461072649720631
1.208615771635065

1.732050807568877
1.657031356966050
1.467047034010839
1.267319925263052

2.220446 × 10−16

1.032096 × 10−5

5.974384 × 10−3

5.870415 × 10−2

1.281975 × 10−16

6.228973 × 10−5

4.089039 × 10−3

4.857139 × 10−2

0.015625

1

0.0
0.1
0.2
0.3

1.122462928047994
1.379934335375192
1.602159904080592
1.723426491772224

1.122462928047995
1.379959423861089
1.601751160457130
1.709575007146963

2.220446 × 10−16

2.508848 × 10−5

4.087436 × 10−4

1.385148 × 10−2

1.978190 × 10−16

1.818092 × 10−5

2.551203 × 10−4

8.037177 × 10−3

0.015625

   

(a) (b) (c) 

Figure 1. The absolute error between the approximate and exact solutions for the time-fractional
KdV-ZK Equation (5.1) at α = 1: (a) x = −1, (b) x = 0, and (c) x = 1.
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(a) (b) 

Figure 2. The solution of the time-fractional KdV-ZK Equation (5.1) at α = 1: (a) exact solution,
(b) 4th NRPS solution (5.16).

  

(a) (b) 

Figure 3. The 4th NRPS solution (5.16) of the time-fractional KdV-ZK Equation (5.1): (a) α = 0.95;
(b) α = 0.9.

  

(a) (b) 

Figure 4. Solution of the time-fractional KdV-ZK Equation (5.1) at α = 1, t ∈ {0, 0.15, 0.3, 0.45}:
(a) exact solution; (b) 4th NRPS solution (5.16).

 

(a) (b) 

Figure 5. The 4th NRPS solution (5.16) of the time-fractional KdV-ZK Equation (5.1) at
t ∈ {0, 0.15, 0.3, 0.45}: (a) α = 0.9; (b) α = 0.85.
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(a) (b) 

Figure 6. The 4th NRPS solution (5.16) of the time-fractional KdV-ZK Equation (5.1) at different
fractional orders α ∈ {1, 0.9, 0.8, 0.7, 0.6}: (a) t = 0.15; (b) t = 0.5.

Applications 2. Consider the following time-fractional spKdV equation:

Dα
t ψ − 8

∂ψ

∂x
+

(
∂ψ

∂x

)2

+ 2
∂3ψ

∂x3 = 0, t ≥ 0, x ∈ R, (5.17)

subject to the initial condition:

ψ(x, 0) = g(x) = 1 + 12tanh(x), x ∈ R. (5.18)

Apply the natural transformation for both sides of (5.17) with the aid of (3.13) to obtain:

sα

wα Ψ(s, w, x)− sα−1

wα ψ(0, x)− 8N
{

∂
∂xN−1{Ψ(s, w, x)}

}
+N

{(
∂

∂xN−1{Ψ(s, w, x)}
)2
}

+2N
{

∂3

∂x3 N−1{Ψ(s, w, x)}
}
= 0,

(5.19)

where Ψ(s, w, x) = N{ψ(t, x)}. Using (5.18) in (5.19), we obtain:

Ψ(s, w, x)− 1
s (1+12tanh(x))

+wα

sα

(
−8N

{
∂

∂xN−1{Ψ(s, w, x)}
}
+N

{(
∂

∂xN−1{Ψ(s, w, x)}
)2
}

+2N
{

∂3

∂x3 N−1{Ψ(s, w, x)}
})

= 0,

(5.20)

Suppose that the solution of (5.20) can be written in the following expansion:

Ψ(s, w, x) =
∞

∑
k=0

Πk(x)wkα

s1+kα
, α ∈ (0, 1], x ∈ A, s ∈ (θ, ∞), w ∈ (0, ∞). (5.21)

Define the Kth truncated series of Ψ(s, w, x) as:

ΨK(s, w, x) =
K
∑
k=0

Πk(x)wkα

s1+kα
, α ∈ (0, 1], x ∈ A, s ∈ (θ, ∞), w ∈ (0, ∞). (5.22)

Using the results in Theorem 2, we deduce that the initial guess Π0(x) = 1 + 12tanh(x).

Based on this fact, we write the Kth truncated series of Ψ(s, w, x) as:

ΨK(s, w, x) =
1
s
(1 + 12tanh(x)) +

K
∑
k=1

Πk(x)wkα

s1+kα
. (5.23)

We define the NRF as:
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N Res(s, w, x) = Ψ(s, w, x)− 1
s (1 + 12tanh(x))

+wα

sα

(
−8N

{
∂

∂xN−1{Ψ(s, w, x)}
}
+N

{(
∂

∂xN−1{Ψ(s, w, x)}
)2
}

+2N
{

∂3

∂x3 N−1{Ψ(s, w, x)}
}

,

(5.24)

and the Kth truncated NRF as:

N ResK(s, w, x) = ΨK(s, w, x)− 1
s (1 + 12tanh(x))

+wα

sα

(
−8N

{
∂

∂xN−1{ΨK(s, w, x)}
}
+N

{(
∂

∂xN−1{ΨK(s, w, x)}
)2
}

+2N
{

∂3

∂x3 N−1{ΨK(s, w, x)}
}

,

(5.25)

Using the fact that lim
s→∞

s1+kαN Resk(s, w, x) = 0, k = 1, 2, . . ., we obtain:

Π1(x) = 8g′(x)−
(

g′(x)
)2 − 2g′′′(x). (5.26)

Π2(x) = 8Π′
1(x)− 2g′(x)Π′

1(x)− 2Π′′′
1 (x). (5.27)

Π3(x) =
−Γ(1 + 2α)

(
Π′

1(x)
)2 − (Γ(1 + α))2(−8Π′

2(x) + 2g′(x)Π′
2(x) + 2Π′′′

2 (x)
)

(Γ(1 + α))2 . (5.28)

Π4(x) =
−2Γ(1 + 3α)Π′

1(x)Π′
2(x) + 8Γ(1 + α)Γ(1 + 2α)

(
−8Π′

3(x) + 2g′(x)Π′
3(x) + 2Π′′′

3 (x)
)

Γ(1 + α)Γ(1 + 2α)
. (5.29)

The CPU time needed to obtain these results (5.26)–(5.29) was 8.53125 s.

Substitute (5.26)–(5.29) into (5.23) to obtain the Kth truncated series of Ψ(s, w, x) as:

ΨK(s, w, x) =
1
s
(1 + 12tanh(x)) +

Π1(x)wα

s1+α
+

Π2(x)w2α

s1+2α
+

Π3(x)w3α

s1+3α
+

Π4(x)w4α

s1+4α
+ . . . +

ΠK(x)wKα

s1+Kα
. (5.30)

Apply the inverse natural operator of (5.30) to obtain the Kth NRPS solution for the time-

fractional spKdV equation as:

ψK(t, x, y, z) = 1 + 12tanh(x) +
Π1(x)tα

Γ(1 + α)
+

Π2(x)t2α

Γ(1 + 2α)
+

Π3(x)t3α

Γ(1 + 3α)
+

Π4(x)t4α

Γ(1 + 4α)
+ . . . +

ΠK(x)tKα

Γ(1 +Kα)
. (5.31)

Table 2 shows the absolute and relative errors for the constructed numerical results to
demonstrate the accuracy of the NRPS method. Figure 7 presents the absolute error between
the exact solution and the explored approximate 4th NRPS solution (5.31) for the time-fractional
spKdV Equation (5.17). When comparing the solution explored using the proposed method
and the exact solution and calculating the absolute error and relative error, it becomes clear
that the proposed method achieves an accuracy within 10−4 in dealing with Equation (5.17),
which is a suitable level for numerical modeling applications that require accurate and stable
solutions. It is worth noting here that based on the literature review, it was found that there are
no works that focused on extracting approximate solutions to Equation (5.17), which prompted
us to compare the approximate solutions derived here with the exact solutions to the equation.
This may be a strong motivation to work on presenting other works that focus on deducing
approximate solutions to the equation using new techniques and comparing them with the
numerical solutions presented in this work. Figure 8 depicts the exact and 4th NRPS solution
surfaces in (5.31) for the time-fractional spKdV Equation (5.17) where we can note the harmony
between them, which ensures the efficiency of the proposed method. In Figure 9, we present
the 2D plots for the exact and 4th NRPS solutions for the time-fractional spKdV Equation
(5.17) at t = 0.1 and t = 1. Note that the harmony between the depicted solutions reduces

73



Fractal Fract. 2025, 9, 152

with time. This harmony can be increased for a longer time by increasing the terms of the
NRPS solution (5.17). To illustrate the effect of the fractional order α on the behavior of the
constructed approximate solution, we present Figure 10 which depicts the 4th NRPS solution
(5.17) at different fractional orders α = 0.95, 0.75, 0.5, 0.25.

  

(a) (b) 

Figure 7. Absolute error between the approximate and exact solutions for the time-fractional spKdV
Equation (5.17) at α = 1 where (a) x = −5; (b) x = 5.

Table 2. Comparison between the exact solution and NRPS solution for the time-fractional sp-
KdV equation.

x t Exact Solution NRPS Solution Absolute Error Relative Error CPU Time

−5

0.0
0.1
0.2
0.3
0.4
0.5

−10.99891045115114
−10.99866923540665
−10.99837462040912
−10.99801478665156
−10.99757529934621
−10.99703853017633

−10.998910451151142
−10.998910451151142
−10.998910451151142
−10.998910451151142
−10.998910451151142
−10.998910451151142

0.0
2.412157 × 10−4

5.358307 × 10−4

8.956644 × 10−4

1.335151 × 10−3

1.871920 × 10−3

0.0
2.193135 × 10−5

4.871908 × 10−5

8.143874 × 10−5

1.214041 × 10−4

1.702204 × 10−4

2.328125

5

0.0
0.1
0.2
0.3
0.4
0.5

12.99891045115114
12.99910794550953
12.99926964263438
12.99940203066545
12.99951042190528
12.99959916587564

12.998910451151142
12.998910451151142
12.998910451151142
12.998910451151142
12.998910451151142
12.998910451151142

0.0
1.974943 × 10−4

3.591914 × 10−4

4.915795 × 10−4

5.999707 × 10−4

6.887147 × 10−4

0.0
1.519291 × 10−5

2.763166 × 10−5

3.781554 × 10−5

4.615333 × 10−5

5.297968 × 10−5

1.703125

  

(a) (b) 

Figure 8. Solution of the time-fractional spKdV Equation (5.17) at α = 1 where (a) exact solution;
(b) 4th NRPS solution (5.31).
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(a) (b) 

Figure 9. Solution of the time-fractional spKdV Equation (5.17) at α = 1 where (a) t = 0.1; (b) t = 1.

 

(a) (b) 

Figure 10. The 4th NRPS solution (5.31) of the time-fractional spKdV Equation (5.17) at different
fractional orders α ∈ {0.95, 0.75, 0.5, 0.25} where (a) t = 5; (b) t = 5.5.

Application 3. Consider the time-fractional FKdV equation:

1√
9.8

Dα
t ψ +

(
−2 − 3

2
ψ

)
∂ψ

∂x
− 1

6
∂3ψ

∂x3 =
−x

40
e
−x2

4 , t ≥ 0, x ∈ R, (5.32)

where φ(x) = 1 + 0.1e
−x2

4 . We assume the initial condition as follows:

ψ(x, 0) = h(x) =
−2ex

(1 + ex)2 , x ∈ R. (5.33)

By applying the same argument above for the NRPS method, we obtain the following results:

Π1(x) =

√
9.8
6

(
3φ′(x) + 6h′(x) + 6h′(x) + 9h(x)h′(x) + h′′′(x)

)
. (5.34)

Π2(x) =

√
9.8
6

(
6Π′

1(x) + 6Π′
1(x) + 9h(x)Π′

1(x) + 9Π1(x)h′(x) + Π′′′
1 (x)

)
. (5.35)

Π3(x) =
√

9.8
6(Γ(1+α))2

(
9Γ(1 + 2α)Π1(x)Π′

1(x)

+(Γ(1 + α))2(12Π′
2(x) + 9h(x)Π′

2(x) + 9Π2(x)h′(x) + Π′′′
2 (x)

))
.

(5.36)

Π4(x) =
√

9.8
6Γ(1+α)Γ(1+2α)

(
9Γ(1 + 3α)

(
Π2(x)Π′

1(x) + Π1(x)Π′
2(x)

)

+Γ(1 + α)Γ(1 + 2α)
(
12Π′

3(x) + 9h(x)Π′
3(x) + 9h′(x)Π3(x) + Π′′′

3 (x)
))

.
(5.37)

The CPU time needed to obtain these results (5.34)–(5.37) was 16.59375 s. Using these results,

we obtain the Kth NRPS solution for the time-fractional FKdV equation as:
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ψK(t, x, y, z) =
−2ex

(1 + ex)2 +
Π1(x)tα

Γ(1 + α)
+

Π2(x)t2α

Γ(1 + 2α)
+

Π3(x)t3α

Γ(1 + 3α)
+

Π4(x)t4α

Γ(1 + 4α)
+ . . . +

ΠK(x)tKα

Γ(1 +Kα)
. (5.38)

Table 3 shows the numerical results at x ∈ {−0.05, 0, 0.05} and
t ∈ {0, 0.01, 0.02, 0.03, 0.04, 0.05} and the absolute and relative errors correspond to these
numerical results which show convergences between the approximate and exact solutions
for the time-fractional FKdV Equation (5.38). Figure 11 presents the absolute error be-
tween the exact solution and the explored approximate fourth NRPS solution (5.31) for
the time-fractional FKdV Equation (5.32). It is clear from Table 3 that the absolute and
relative errors were calculated at different values of the variable x and the variable t, and
the accuracy of the proposed method was within 10−3, which is a suitable level to confirm
that the proposed method in this work is effective and suitable for dealing with such issues
in the context of numerical modeling. Moreover, the approximate solutions presented
here are in agreement with those presented in Ref. [28]. It is worth noting here that the
work in Ref. [28] did not present the absolute or relative error of the derived solutions and
did not provide a reading for comparing the solutions with other approximate solutions
of Equation (5.32). Figures 12 and 13 present the surface of the fourth NRPS approxi-
mate solution and the exact solution to be able to observe the harmony between them. In
Figure 9, we consider α = 1, while we consider different fractional orders α ∈ {0.9, 0.8}
in Figure 13. Figure 14 compares the exact solution and the fourth NRPS solution (5.38)
at t = 0.05 and t = 0.15. The harmony between the depicted solutions is a little larger
at t = 0.05 than at t = 0.15. To further illustrate the effect of the fractional derivative on
the behavior of the solution derived using the proposed method for the time-fractional
FKdV Equation (5.32), we present Figures 15–17. Figure 15 was performed by considering
t ∈ {0, 0.1, 0.2} at α = 0.9 and α = 0.75, while we performed Figure 16 by considering
t ∈ {0, 0.15, 0.3, 0.5} where α = 0.95 and α = 0.75. Figure 17 depicts the fourth NRPS
solution at t ∈ {0.05, 0.15, 0.25, 0.5} where α ∈ {0.95, 0.8, 0.7, 0.6}.

Table 3. A comparison between the exact solution and NRPS solution for the time-fractional
FKdV equation.

x t Exact Solution NRPS Solution Absolute Error Relative Error CPU Time

−0.05

0.0
0.01
0.02
0.03
0.04
0.05

−0.49968763016223
−0.49968763016223
−0.49968763016223
−0.49968763016223
−0.49968763016223
−0.49968763016223

−0.49968763016223
−0.49987856920723
−0.49981332801340
−0.49949449146807
−0.49892579802621
−0.49811213971041

0.0
1.909390 × 10−4

1.256978 × 10−4

1.931386 × 10−4

7.618321 × 10−4

1.575490 × 10−3

0.0
3.821168 × 10−4

2.515528 × 10−4

3.865188 × 10−4

1.524616 × 10−3

3.152950 × 10−3

41.265625

0

0.0
0.01
0.02
0.03
0.04
0.05

−0.5
−0.5
−0.5
−0.5
−0.5
−0.5

−0.5
−0.49987108520902
−0.49948494667779
−0.49884340193134
−0.49794948017807
−0.49680742230976

0.0
1.289147 × 10−4

5.150533 × 10−4

1.156598 × 10−3

2.050519 × 10−3

3.192577 × 10−3

0.0
2.578295 × 10−4

1.030106 × 10−3

2.313196 × 10−3

4.101039 × 10−3

6.385155 × 10−3

58.0625

0.05

0.0
0.01
0.02
0.03
0.04
0.05

−0.49968763016223
−0.49968763016223
−0.49968763016223
−0.49968763016223
−0.49968763016223
−0.49968763016223

−0.49968763016223
−0.49923907955869
−0.49853263964456
−0.49756918623542
−0.49635074871447
−0.49488051003255

0.0
4.485506 × 10−4

1.154990 × 10−3

2.118443 × 10−3

3.336881 × 10−3

4.807120 × 10−3

0.0
8.976620 × 10−4

2.311425 × 10−3

4.239536 × 10−3

6.677934 × 10−3

9.620250 × 10−3

39.9375
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(a) (b) (c) 

Figure 11. The absolute error between the approximate and exact solutions for the time-fractional
FKdV Equation (5.32) at α = 1: (a) x = −0.05, (b) x = 0, and (c) x = 0.05.

  

(a) (b) 

Figure 12. The solution of the time-fractional FKdV Equation (5.32) at α = 1: (a) exact solution, (b) 4th
NRPS solution (5.38).

  

(a) (b) 

Figure 13. The 4th NRPS solution (5.38) of the time-fractional FKdV Equation (5.32): (a) α = 0.9;
(b) α = 0.8.

  

(a) (b) 

Figure 14. The solution of the time-fractional FKdV Equation (5.32) at α = 1: (a) t = 0.05, (b) t = 0.15
on (5.38).
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(a) (b) 

Figure 15. The 4th NRPS solution (5.38) of the time-fractional FKdV Equation (5.32) at t ∈ {0, 0.1, 0.2}:
(a) α = 0.9, (b) α = 0.75.

 

(a) (b) 

Figure 16. The 4th NRPS solution (5.38) of the time-fractional FKdV Equation (5.32) at
t ∈ {0, 0.15, 0.3, 0.5}: (a) α = 0.95, (b) α = 0.75.

 
 

(a) (b) 

 

(c) (d) 

Figure 17. The 4th NRPS solution (5.38) of the time-fractional FKdV Equation (5.32) at different
fractional orders α ∈ {0.95, 0.8, 0.7, 0.6}: (a) t = 0.05, (b) t = 0.15, (c) t = 0.25, and (d) t = 0.5.

From the introduced numerical and graphical results, we can deduce that the proposed
NRPS method is efficient in dealing with the governing models by noticing the harmony
and convergences between the approximate and exact solutions. We utilized four terms
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of the NRPS solutions to show their efficiency and we can achieve higher efficiency by
obtaining further terms of the approximate solutions.

6. Conclusions

This work investigated three time-fractional models that arise in plasma physics: the
mKdV-ZK equation, the spKdV equation, and the FKdV equation. The governing equations
in this work are of considerable importance in plasma physics by modeling nonlinear ion
acoustic waves which play a fundamental role in understanding wave dynamics in plasma.
We considered the fractional derivative in the Caputo sense. In this work, we investigate
a new work based on the new fractional expansion in the natural transformation space
and the RPS method to construct analytical solutions for the governing models. The RPS
method is one of the important methods in deriving approximate solutions for fractional
models, but it may require complex calculations to deal with more complex fractional
models. To address this point, the Laplace transform was integrated with the RPS method
in the literature. In this work, we seek to compose the natural transformation with the RPS
method, as the natural transformation is more general than the Laplace transform, which
enables us to deal with a wider range of complex fractional systems. To achieve our goal,
we investigated the theoretical analysis of the proposed method to reveal the applicability,
efficiency, and effectiveness of this approach to dealing with the governing models. Clear
steps were set for the proposed method to obtain analytical solutions that are consistent
and close to the exact solutions. These steps were implemented for the three governing
equations, and an analytical study of the derived solutions for each equation was presented
to confirm that the proposed approach generates analytical solutions that converge quickly
to exact solutions, which proves the effectiveness of the proposed method.
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Abstract: In this work, a fully discrete mixed finite element (MFE) scheme is designed to solve

the multi-term time-fractional reaction–diffusion equations with variable coefficients by using the

well-known L1 formula and the Raviart–Thomas MFE space. The existence and uniqueness of the

discrete solution is proved by using the matrix theory, and the unconditional stability is also discussed

in detail. By introducing the mixed elliptic projection, the error estimates for the unknown variable u

in the discrete L∞
(

L2(Ω)
)

norm and for the auxiliary variable λ in the discrete L∞
((

L2(Ω)
)2
)

and

L∞(H(div, Ω)) norms are obtained. Finally, three numerical examples are given to demonstrate the

theoretical results.

Keywords: multi-term time-fractional reaction–diffusion equations; mixed finite element method; L1

formula; unconditional stability; error estimate

1. Introduction

Fractional calculus and fractional partial differential equations (FPDEs) have been
confirmed to be very important tools in describing some anomalous phenomena and
processes with memory and nonlocal properties [1–6]. Moreover, some underlying and
complex processes can be described more appropriately by multi-term FPDEs [7–9], as
they contains multiple fractional derivative or calculus terms. In recent years, many
numerical methods have been increasingly used by scholars to solve multi-term FPDEs.
Liu et al. [10] constructed some finite difference (FD) schemes to solve the multi-term time-
fractional wave-diffusion equations by using two fractional predictor–corrector methods.
Dehghan et al. [11] devised two high-order numerical schemes to solve the multi-term
time-fractional diffusion-wave equations by using the compact FD method and Galerkin
spectral technique. Ren and Sun [12] established an efficient compact FD scheme for
the multi-term time-fractional diffusion-wave equation by using the L1 formula. Zheng
et al. [13] proposed a high-order space–time spectral method for the multi-term time-
fractional diffusion equations by using the Legendre polynomials in the temporal direction
and the Fourier-like basis functions in the spatial direction. Du and Sun [14] constructed an
FD scheme for multi-term time-fractional mixed diffusion and wave equations by using the
L2 − 1σ formula. Hendy and Zaky [15] proposed a spectral method for a coupled system
of nonlinear multi-term time–space fractional diffusion equations by using the L1 formula
on a time-graded mesh. Liu et al. [16] developed an ADI Legendre spectral method for
solving a multi-term time-fractional Oldroyd-B fluid-type diffusion equation. Wei and
Wang [17] constructed a higher-order numerical scheme for the multi-term variable-order
time-fractional diffusion equation by using the local discontinuous Galerkin method. She
et al. [18] considered a spectral method for solving the multi-term time-fractional diffusion
problem by using a modified L1 formula.

Meanwhile, many scholars selected the finite element (FE) method for solving the
multi-term FPDEs and have achieved excellent results. Jin et al. [19] developed an FE
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method for a multi-term time-fractional diffusion equation and considered the case of
smooth and nonsmooth initial data. Li et al. [20] proposed an FE method to solve a higher-
dimensional multi-term fractional diffusion equation on nonuniform time meshes. Zhou
et al. [21] developed a weak Galerkin FE method for solving multi-term time-fractional
diffusion equations by using a convolution quadrature formula. Bu et al. [22] proposed a
space–time FE method for solving the multi-term time–space fractional diffusion equation
based on the suitable graded time mesh. Feng et al. [23] proposed an FE method for a
multi-term time-fractional mixed subdiffusion and diffusion-wave equation on the convex
domain by using mixed L-type schemes. Meng and Stynes [24] considered an L1 FE
method for a multi-term time-fractional initial-boundary value problem on the temporal
graded mesh. Yin et al. [25] constructed a class of efficient time-stepping FE schemes
for multi-term time-fractional reaction–diffusion-wave equations by using the shifted
convolution quadrature method. Huang et al. [26] proposed an α-robust FE method for a
multi-term time-fractional diffusion problem on a graded mesh by using the L1 formula. Liu
et al. [27] proposed an FE method for solving a multi-term variable-order time-fractional
diffusion equation and developed an efficient parallel-in-time algorithm to reduce the
computational costs.

In this work, we will construct a fully discrete mixed finite element (MFE) scheme for
the following multi-term time-fractional reaction–diffusion (TFRD) equations with variable
coefficients:

⎧
⎪⎨
⎪⎩

P(Dt)u(x, t)− div(A(x)∇u(x, t)) + p(x)u(x, t) = f (x, t), (x, t) ∈ Ω × J,

u(x, t) = 0, (x, t) ∈ ∂Ω × J,

u(x, 0) = u0(x), x ∈ Ω,

(1)

where Ω ⊂ R2 is a convex and bounded polygon region with boundary ∂Ω, J = (0, T] with
0 < T < ∞. We assume that the source function f (x, t), initial data u0(x), and non-negative
coefficient p(x) are smooth enough. Specifically, for the symmetric diffusion coefficient
matrix A(x), we should assume that there exist two constants A0, A1 > 0 such that

A0zTz ≤ zTA(x)z ≤ A1zTz, ∀z ∈ R2, ∀x ∈ Ω.

Moreover, the multi-term time-fractional derivative P(Dt)u(x, t) is defined by

P(Dt)u(x, t) =
m

∑
i=1

biD
αi
t u(x, t), 0 < αm < αm−1 < · · · < α1 < 1,

where bi (i = 1 , 2, · · · , m) are the positive real numbers and D
αi
t u is the Caputo time-

fractional derivative as follows:

D
αi
t u(x, t) =

1
Γ(1 − αi)

∫ t

0

∂u(x, s)

∂s

1
(t − s)αi

ds,

where Γ(·) denotes the Γ-function.
It should be noted that the MFE method, as an important numerical calculation

method, has been widely used to solve FPDEs [28–32], and some scholars have also used
this method to solve the multi-term FPDEs [33–35]. In [33], Shi et al. proposed an H1

-Galerkin mixed finite element (MFE) method for the multi-term time-fractional diffusion
equations and gave a superconvergence result. In [34], Li et al. proposed an MFE method
for the multi-term time-fractional diffusion and diffusion-wave equations by using an

MFE space contained in
(

L2(Ω)
)d × H1

0(Ω), where d = 2, 3. In [35], Cao et al. constructed
a nonconforming MFE scheme for the multi-term time-fractional mixed diffusion and
diffusion-wave equations. Motivated by the above excellent works, we will construct a fully
discrete MFE scheme for the multi-term TFRD equation (1) by using the Raviart–Thomas
MFE space and the L1 formula, analyze the existence, uniqueness, and unconditional
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stability in detail, and give error estimates for u (in discrete L∞
(

L2(Ω)
)

norm) and auxiliary

variable λ (in discrete L∞
((

L2(Ω)
)2
)

and discrete L∞(H(div, Ω)) norms). Finally, we give

numerical experiments to demonstrate the efficiency of the proposed method.
The remainder of this paper is arranged as follows. In Section 2, we construct a fully

discrete MFE scheme for the multi-term TFRD equations by using the Raviart–Thomas
MFE space and the L1 -formula. In Section 3, we give a fractional Grönwall inequality and
analyze the existence and uniqueness of the discrete solution. We derive the unconditional
stability results and a priori error estimates in detail in Sections 4 and 5, respectively. Finally,
three numerical examples are given to verify the theoretical results.

2. Mixed Finite Element Method

We introduce the flux λ(x, t) = −A(x)∇u(x, t) as the auxiliary variable. Then, the
original problem (1) can be rewritten as follows:

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(a)P(Dt)u(x, t) + divλ(x, t) + p(x)u(x, t) = f (x, t), (x, t) ∈ Ω × J,

(b)A−1(x)λ(x, t) +∇u(x, t) = 0, (x, t) ∈ Ω × J,

(c)u(x, t) = 0, (x, t) ∈ ∂Ω × J,

(d)u(x, 0) = u0(x), x ∈ Ω.

(2)

Let V = L2(Ω) and W = H(div, Ω) =
{

w ∈
(

L2(Ω)
)2

: divw ∈ L2(Ω)
}

. Then, we obtain

the mixed variational formulation of (2): find (u, λ) ∈ V × W such that

⎧
⎪⎨
⎪⎩

(a)(P(Dt)u, v) + (divλ, v) + (pu, v) = ( f , v), ∀v ∈ V,

(b)
(
A−1λ, w

)
− (u, divw) = 0, ∀w ∈ W,

(c)u(x, 0) = u0(x), ∀x ∈ Ω.

(3)

Let Kh be a quasi-uniform triangulation of the domain Ω, hT be the diameter of the triangle
T ∈ Kh and denote h = max{hT}. We select the Raviart–Thomas MFE space Vh × Wh ⊂
V × W, that is,

Vh(K) = {vh ∈ V : vh|T ∈ Pr(T), ∀T ∈ Kh},

Wh(K) =
{

wh ∈ W : wh

∣∣∣T ∈ (Pr(T))
2 ⊕ (xPr(T)), ∀T ∈ Kh

}
,

where the notation ⊕ indicates a direct sum, xPr(T) = (x1Pr(T), x2Pr(T)), x = (x1, x2) and
r ≥ 0 is a given integer.

Let τ = T/N and tn = nτ for n = 0, 1, 2, · · · , N, where N is a positive integer. For the
parameters αi and i = 1, 2, · · · , m, the Caputo time-fraction derivative D

αi
t u(x, t) at t = tn

is approximated by using the well-known L1 formula [36,37] as follows:

D
αi
t u(x, tn) =

1
Γ(1 − αi)

∫ tn

0

∂u(x, s)

∂s

1
(tn − s)αi

ds

=
1

Γ(2 − αi)

n−1

∑
k=0

uk+1 − uk

τ

[
(tn − tk)

1−αi − (tn − tk+1)
1−αi

]
+ Qn

αi
(x)

=
1

Γ(2 − αi)

[
dn

αi ,1
un +

n−1

∑
k=1

(
dn

αi ,k+1 − dn
αi ,k

)
un−k − dn

αi ,nu0

]
+ Qn

αi
(x)

=
1

Γ(2 − αi)

n

∑
k=0

d̃n
αi ,k

uk + Qn
αi
(x),

(4)
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where dn
αi,k

=
(tn−tn−k)

1−αi−(tn−tn−k+1)
1−αi

τ , d̃n
αi,0

= −dn
αi,n, d̃n

αi,n = −dn
αi,1

, and d̃n
αi,k

= dn
αi,n−k+1 −

dn
αi,n−k(0 < k ≤ n − 1). Setting D

αi
Nun = 1

Γ(2−αi)

n

∑
k=0

d̃n
αi,k

uk, we have D
αi
t u(x, tn) = D

αi
Nun +

Qn
αi
(x), where Qn

αi
(x) is the truncation error.

Based on the above definitions, and setting un
h and λn

h to be the discrete solutions of
u and λ at t = tn, respectively, then we can design a fully discrete MFE scheme for the
original problem (1): find

(
un

h , λn
h

)
∈ Vh × Wh such that

⎧
⎨
⎩
(a)

(
m

∑
i=1

biD
αi
N un

h , vh

)
+
(
divλn

h , vh

)
+
(

pun
h , vh

)
= ( f n, vh), ∀vh ∈ Vh,

(b)
(
A−1λn

h , wh

)
−
(
un

h , divwh

)
= 0, ∀wh ∈ Wh,

(5)

where
(
u0

h, λ0
h

)
∈ Vh × Wh satisfies

{
(a)

(
A−1λ0

h, wh

)
−
(
u0

h, divwh

)
= 0, ∀wh ∈ Wh,

(b)
(
divλ0

h, vh

)
= (divλ0, vh), ∀vh ∈ Vh,

(6)

where λ0(x) = −A(x)∇u0(x).

Remark 1. (I) In the MFE scheme (5)–(6), we particularly emphasize the calculation of initial values(
u0

h, λ0
h

)
, as this calculation will be used in stability and convergence analyses. Moreover, from the

mixed elliptic projection Rh defined in Section 5, we can see that
(
u0

h, λ0
h

)
= (Rhu0, Rhλ0).

(II) Compared with the standard FE methods, it is well known that the MFE method can
not only reduce the smoothness requirement of the finite element space, but also simultaneously
calculate multiple physical quantities. These advantages are very important and popular in practical
applications.

3. Existence and Uniqueness

In this section, we shall prove the existence and uniqueness for the MFE scheme (5)–(6).
We first give some lemmas, which are important in subsequent theoretical analysis.

Lemma 1 ([38]). There exist two positive constants μ0 and μ1 such that

μ0‖ w ‖2 ≤ ‖ w ‖2
A−1 ≤ μ1‖ w ‖2, where‖ w ‖2

A−1 =
(
A−1w, w

)
, ∀w ∈ W.

Lemma 2 ([28]). Let {zn}∞
n=0 be a sequence on Wh. Then, the following identity holds:

n

∑
k=0

d̃n
αi ,k

(
A−1zk, zn

)
=

1
2
[d̃n

αi ,n

(
A−1zn, zn

)
+

n−1

∑
k=0

d̃n
αi ,k

(
A−1zk, zk

)

+
n−1

∑
k=0

d̃n
αi ,k

(
A−1

(
zn − zk

)
, zn − zk

]
.

Lemma 3. Let
{

ϕk : 0 ≤ k ≤ N} be a non-negative sequence,
{

ξk : 0 ≤ k ≤ N} be a nonde-

creasing positive sequence, and C0 ≥ 1 be a constant, which satisfy

m

∑
i=1

bi
Γ(2−αi)

d̃n
αi ,n ϕn ≤ −C0

m

∑
i=1

bi
Γ(2−αi)

n−1
∑

k=0
d̃n

αi ,k
ϕk + ξn, 1 ≤ n ≤ N. (7)

Then, we have
ϕn ≤ Cn

0 (ϕ0 + 1
m
∑

i=1

bi
Γ(2−αi)

dn
αi ,n

ξn), 1 ≤ n ≤ N.
(8)

85



Fractal Fract. 2024, 8, 51

Further, we can further write (8) as

ϕn ≤ Cn
0 (ϕ0 +

m

∑
i=1

Γ(1−αi)t
αi
n

bi
ξn), 1 ≤ n ≤ N. (9)

Proof. When n = 1 in (7), we have

m

∑
i=1

bi

Γ(2 − αi)
d̃1

αi ,1
ϕ1 ≤ −C0

m

∑
i=1

bi

Γ(2 − αi)
d̃1

αi ,0 ϕ0 + ξ1. (10)

Noting that d̃n
αi ,0

= −dn
αi ,n, d̃n

αi ,n = dn
αi ,1

, we have

m

∑
i=1

bi

Γ(2 − αi)
d1

αi ,1
ϕ1 ≤ C0

m

∑
i=1

bi

Γ(2 − αi)
d1

αi ,1
ϕ0 + ξ1. (11)

Then, we can obtain

ϕ1 ≤ C0(ϕ0 +
1

m

∑
i=1

bi
Γ(2−αi)

d1
αi ,1

ξ1). (12)

It means that the conclusion (8) is valid for the case of n = 1. Assume that (8) is valid for
n = 1, 2, · · · , r. We now need to prove that it also holds for n = r + 1. Selecting n = r + 1
in (7), we obtain

m

∑
i=1

bi

Γ(2 − αi)
d̃

j+1
αi ,j+1 ϕj+1

≤−C0

m

∑
i=1

bi

Γ(2 − αi)

j

∑
k=0

d̃
j+1
αi ,k

ϕk + ξ j+1

=C0

m

∑
i=1

bi

Γ(2 − αi)

j

∑
k=1

(
d

j+1
αi ,j−k+1 − d

j+1
αi ,j−k+2

)
ϕk + C0

m

∑
i=1

bid
j+1
αi ,j+1 ϕ0 + ξ j+1

=C0

m

∑
i=1

bi

Γ(2 − αi)

j−1

∑
k=0

(
d

j+1
αi ,k+1 − d

j+1
αi ,k+2

)
ϕj−k + C0

m

∑
i=1

bi

Γ(2 − αi)
d

j+1
αi ,j+1 ϕ0 + ξ j+1.

(13)

Noting that 0 < dk+1
αi ,k+1 < dk

αi ,k
and 0 < dn

αi ,k+1 < dn
αi ,k

, (k = 0, 1 · · · j), we have

m

∑
i=1

bi

Γ(2 − αi)
d̃

j+1
αi ,j+1 ϕj+1

≤C0

m

∑
i=1

bi

Γ(2 − αi)

j−1

∑
k=0

(
d

j+1
αi ,k+1 − d

j+1
αi ,k+2

)
[C

j−k
0 (ϕ0 +

1
m

∑
i=1

bi
Γ(2−αi)

d
j−k
αi ,j−k

ξ j−k)]

+C0

m

∑
i=1

bi

Γ(2 − αi)
dj+1

αi ,j+1(ϕ0 +
1

m

∑
i=1

bi
Γ(2−αi)

d
j+1
αi ,j+1

ξ j+1)

≤C
j+1
0

m

∑
i=1

bi

Γ(2 − αi)
[

j−1

∑
k=0

(
d

j+1
αi ,k+1 − d

j+1
αi ,k+2

)
+ d

j+1
αi ,j+1](ϕ0 +

1
m

∑
i=1

bi
Γ(2−αi)

d
j+1
αi ,j+1

ξ j+1)

≤C
j+1
0

m

∑
i=1

bi

Γ(2 − αi)
d

j+1
αi ,1

(ϕ0 +
1

m

∑
i=1

bi
Γ(2−αi)

d
j+1
αi ,j+1

ξ j+1).

(14)
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Therefore, using the mathematical induction method, we can complete the proof of (8).

From [37], we know nαi

(
n1−αi − (n − 1)1−αi

)
≥ 1 − αi, and then

dn
αi ,n=

(nτ)1−αi − (nτ − τ)1−αi

τ
=

(
n1−αi − (n − 1)1−αi

)

ταi
≥ (1 − αi)

ταi nαi
. (15)

Thus, making use of (8) and (15), we can complete the proof of (9). �

Next, we give the existence and uniqueness results for the MFE scheme (5).

Theorem 1. The MFE scheme (5) has a unique solution.

Proof. Let Vh = span
{

φ1, φ2, · · · , φM1

}
and Wh = span

{
ψ1, ψ2, · · · , ψM2

}
. Then, un

h and
λn

h can be written as

un
h =

M1

∑
i=1

ũn
i φi, λn

h =
M2

∑
j=1

s̃n
j ψj. (16)

Substituting 16 into (5) and selecting vh = φi (i = 1, 2, · · · , M1) and wh = ψj (j = 1, 2, · · · , M2),
we have

⎡
⎣

m

∑
i=1

bi
Γ(2−αi)

d̃n
αi ,nB1 + B3 DT

−D B2

⎤
⎦
[

Un

Ln

]
=

⎡
⎣Fn −

m

∑
i=1

bi
Γ(2−αi)

n−1
∑

k=0
d̃n

αi ,k
B1Uk

0

⎤
⎦, (17)

where

Un =
(

ũn
1 , ũn

2 , · · · , ũn
M1

)T
, Ln =

(
s̃n

1 , s̃n
2 , · · · , s̃n

M2

)T
,

B1 =
((

φi, φj

))
M1×M1

, B2 =
((
A−1ψi, ψj

))
M2×M2

,

B3 =
((

pφi, φj

))
M1×M1

, D =
((

divψi, φj

))
M2×M1

,

Fn = (( f n, φi))M1×1,

Noting that B1 and B2 are symmetric positive definite matrices and B3 is a symmetric
semi-positive matrix, we have

[
E −DT B−1

2
0 E

]⎡
⎣

m

∑
i=1

bi
Γ(2−αi)

d̃n
αi ,nB1 + B3 DT

−D B2

⎤
⎦ =

[
G 0
−D B2

]
. (18)

where G =
m

∑
i=1

bi
Γ(2−αi)

d̃n
αi ,nB1 + B3 + DT B−1

2 D. It is easy to see that G is invertible, so the

coefficient matrix of linear Equation (17) is invertible. This means that the MFE scheme (5)
has a unique solution. �

Remark 2. For Lemma 3, when C0 = 1, a similar conclusion can be seen from the proof of
Theorem 3.1 in [20]. When C0 > 1, some special applications can be seen from [39]. It should
be noted that this lemma can be considered a fractional Grönwall inequality without any other
conditions for its existence, which will play a crucial role in the subsequent proof process of stability
and convergence analyses.

4. Stability Analysis

In this section, we will discuss the unconditional stability for the MFE scheme (5)–(6).
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Theorem 2. Let
(
un

h , λn
h

)N
n=1 be the solutions of the MFE scheme (5). Then, there exists a constant

C > 0 independent of h and N such that

‖ un
h ‖ ≤ ‖ u0

h ‖+
m

∑
i=1

Γ(1 − αi)t
αi
n

bi
sup

t∈[0,T]
‖ f (t) ‖ � U⋄

h ,

‖ λn
h ‖ ≤ C

⎛
⎝‖ λ0

h ‖+
(

m

∑
i=1

Γ(1 − αi)t
αi
n

bi

)1/2

( sup
t∈[0,T]

‖ f (t) ‖+ ‖ p ‖∞U⋄
h )

⎞
⎠.

Proof. Taking vh = un
h and wh = λn

h in (5), we have

(
m

∑
i=1

biD
αi
N un

h , un
h

)
+
(
A−1λn

h , λn
h

)
+ (pun

h , un
h) = ( f n, un

h). (19)

Using Lemma 1 and the definition of D
αi
N un

h , we have

m

∑
i=1

bi

Γ(2 − αi)
d̃n

αi ,n(u
n
h , un

h) + μ0‖ λn
h ‖2 ≤

m

∑
i=1

bi

Γ(2 − αi)

n−1

∑
k=0

d̃n
αi ,k

(
uk

h, un
h

)
+ ( f n, un

h). (20)

Applying the Cauchy–Schwarz inequality yields

m

∑
i=1

bi

Γ(2 − αi)
d̃n

αi ,n‖ un
h ‖ ≤

m

∑
i=1

bi

Γ(2 − αi)

n−1

∑
k=0

d̃n
αi ,k

‖ uk
h ‖+ ‖ f n ‖. (21)

Using Lemma 3, we obtain

‖ un
h ‖ ≤ ‖ u0

h ‖+
m

∑
i=1

Γ(1 − αi)t
αi
n

bi
sup

t∈[0,T]
‖ f (t) ‖ � U⋄

h . (22)

Next, using (5) (b) and (6) (a), we have

(
A−1

m

∑
i=1

biD
αi
N λn

h , wh

)
−
(

m

∑
i=1

biD
αi
N un

h , divwh

)
= 0, ∀wh ∈ Wh. (23)

Choosing vh =
m

∑
i=1

biD
αi
N un

h and wh = λn
h in (5) (a) and (23), respectively, we obtain

‖
m

∑
i=1

biD
αi

Nun
h ‖

2

+

(
A−1

m

∑
i=1

biD
αi

Nλn
h , λn

h

)
+

(
pun

h ,
m

∑
i=1

biD
αi

Nun
h

)
=

(
f n,

m

∑
i=1

biD
αi

Nun
h

)
. (24)

Using Lemma 2 in (24) yields

‖
m

∑
i=1

biD
αi
N un

h ‖
2

+
1
2

m

∑
i=0

bi

Γ(2 − αi)

[
d̃n

αi ,n

(
A−1λn

h , λn
h

)
+

n−1

∑
k=0

d̃n
αi ,k

(
A−1λk

h, λk
h

)

−
n−1

∑
k=0

d̃n
αi ,k

(
A−1

(
λn

h − λk
h

)
, λn

h − λk
h

)]
=

(
f n,

m

∑
i=1

biD
αi
N un

h

)
−
(

pun
h ,

m

∑
i=1

biD
αi
N un

h

)
.

(25)
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Because of d̃n
αi ,k

< 0, 0 < k ≤ n − 1, we have

‖
m

∑
i=1

biD
αi
N un

h ‖
2

+
1
2

m

∑
i=0

bi

Γ(2 − αi)
d̃n

αi ,n

(
A−1λn

h , λn
h

)

≤−1
2

m

∑
i=0

bi

Γ(2 − αi)

n−1

∑
k=0

d̃n
αi ,k

(
A−1λk

h, λk
h

)

+

(
f n,

m

∑
i=1

biD
αi
N un

h

)
−
(

pun
h ,

m

∑
i=1

biD
αi
N un

h

)
.

(26)

Apply the Cauchy–Schwarz inequality and the Young inequality in (26) to obtain

‖
m

∑
i=1

biD
αi
N un

h ‖
2

+
1
2

m

∑
i=0

bi

Γ(2 − αi)
d̃n

αi ,n

(
A−1λn

h , λn
h

)

≤−1
2

m

∑
i=0

bi

Γ(2 − αi)

n−1

∑
k=0

d̃n
αi ,k

(
A−1λk

h, λk
h

)

+
1
2
‖

m

∑
i=1

biD
αi
N un

h ‖
2

+ ‖ f n ‖2 + ‖ p ‖2
∞‖ un

h ‖2.

(27)

Using Lemma 3 in (27), we obtain

‖ λn
h ‖ ≤ C

(
‖ λ0

h ‖+
(

m

∑
i=1

Γ(1−αi)t
αi
n

bi

)1/2

( sup
t∈[0,T]

‖ f (t) ‖+ ‖ p ‖∞U⋄
h )

)
. (28)

Thus, we complete the proof. �

5. Convergence Analysis

In this section, we will present the convergence results. For this purpose, we first
introduce the mixed elliptic projection (Rhu, Rhλ) ∈ Vh × Wh defined by

{
(a)

(
A−1(λ − Rhλ), wh

)
− (u − Rhu, divwh) = 0, ∀wh ∈ Wh,

(b)(div(λ − Rhλ), vh) = 0, ∀vh ∈ Vh.
(29)

Then, the above projection satisfies the classical estimates as follows.

Lemma 4 ([40,41]). There exists a constant C > 0 independent of h and N such that

‖ λ − Rhλ ‖≤ Chr+1‖ λ ‖r+1, forλ ∈
(

Hr+1(Ω)
)2

,

‖ div(λ − Rhλ) ‖≤ Chr+1‖ divλ ‖r+1, fordivλ ∈ Hr+1(Ω),

‖ u − Rhu ‖≤ Chr+1
(
‖ u ‖r+1 + ‖ λ ‖r+1), foru ∈Hr+1(Ω), λ ∈

(
Hr+1(Ω)

)2
.

For the truncation error Qn
αi

(i = 1, 2, · · · , m) of the L1 formula, from [36,37], we give
the following estimates.

Lemma 5. Let u ∈ C2
(

J, L2(Ω)
)
. Then, we have

‖ Qn
αi
‖≤ CN−(2−αi), i = 1, 2, · · · , m,

‖
m

∑
i=1

biQ
n
αi
‖ ≤ CN−(2−α1),
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where C > 0 is a constant independent of h and N.

Now, we write the errors u(tn)− un
h = u(tn)− Rhu(tn) + Rhu(tn)− un

h = ρn + θn and
λ(tn)− λn

h = λ(tn)− Rhλ(tn) + Rhλ(tn)− λn
h = ξn + ηn. From (3) and (5), making use of

the mixed elliptic projection Rh, we have the following error equations:

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(a)

(
m

∑
i=1

biD
αi
N(θn + ρn), vh

)
+ (divηn, vh) + (p(θn + ρn), vh)

= −
(

m

∑
i=1

biQ
n
αi

, vh

)
, ∀vh ∈ Vh,

(b)
(
A−1ηn, wh

)
− (θn, divwh) = 0, ∀wh ∈ Wh.

(30)

Noting that
(
u0

h, λ0
h

)
= (Rhu0, Rhλ0), we have θ0 = 0 and η0 = 0. We next give the

convergence results for the MFE scheme (5)–(6).

Theorem 3. Let (un, λn) ∈ V × W and
(
un

h , λn
h

)
∈ Vh × Wh be the solutions of (3) and (5),

respectively. Assume that u, divλ ∈ C2
(

J, Hr+1(Ω)
)
, λ ∈ C2

(
J,
(

Hr+1(Ω)
)2
)

. Then, we have

max
1≤n≤N

‖ u(tn)− un
h ‖+ max

1≤n≤N
‖ λ(tn)− λn

h ‖ ≤ C
(

hr+1 + N−(2−α1)
)

,

max
1≤n≤N

‖ λ(tn)− λn
h ‖H(div,Ω) ≤ C

(
1 + N

αm
2

)(
hr+1 + N−(2−α1)

)
,

where C > 0 is a constant independent of h and N.

Proof. Taking vh = θn and wh = ηn in (30), we can obtain

(
m

∑
i=1

biD
αi
N θn, θn

)
+
(
A−1ηn, ηn

)
+ (pθn, θn)

=−
(

m

∑
i=1

biQ
n
αi

, θn

)
− (pρn, θn)−

(
m

∑
i=1

biD
αi
N ρn, θn

)
.

(31)

Noting that p(x) ≥ 0, using the Lemma 1 and the definition of D
αi
N un

h , we have

m

∑
i=1

bi

Γ(2 − αi)
d̃n

αi ,n(θ
n, θn) + μ0‖ ηn ‖2

≤−
m

∑
i=1

bi

Γ(2 − αi)

n−1

∑
k=0

d̃n
αi ,k

(
θk, θn

)
−
(

m

∑
i=1

biQ
n
αi

, θn

)
− (pρn, θn)−

(
m

∑
i=1

biD
αi
N ρn, θn

)
.

(32)

Applying the Cauchy–Schwarz inequality, we obtain

m

∑
i=1

bi

Γ(2 − αi)
d̃n

αi ,n‖ θn ‖2 + μ0‖ ηn ‖2

≤−
m

∑
i=1

bi

Γ(2 − αi)

n−1

∑
k=0

d̃n
αi ,k

‖ θk ‖‖ θn ‖

+(‖
m

∑
i=1

biQ
n
αi
‖+ ‖ p ‖∞‖ ρ ‖+ ‖

m

∑
i=1

biD
αi
N ρn ‖)‖ θn ‖,

(33)
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and then

m

∑
i=1

bi

Γ(2 − αi)
d̃n

αi ,n‖ θn ‖2

≤−
m

∑
i=1

bi

Γ(2 − αi)

n−1

∑
k=0

d̃n
αi ,k

‖ θk ‖+ (‖
m

∑
i=1

biQ
n
αi
‖+ ‖ p ‖∞‖ ρ ‖+ ‖

m

∑
i=1

biD
αi
N ρn ‖).

(34)

Using Lemmas 4 and 5, we obtain

m

∑
i=1

bi

Γ(2 − αi)
d̃n

αi ,n‖ θn ‖≤ −
m

∑
i=1

bi

Γ(2 − αi)

n−1

∑
k=0

d̃n
αi ,k

‖ θk ‖+ C
(

N−(2−α1) + hr+1
)

. (35)

Noting that θ0 = 0 and using Lemma 3, we obtain

‖ θn ‖≤ C
(

hr+1 + N−(2−α1)
)

. (36)

Now, from (30) (b), we obtain

(
A−1

m

∑
i=1

biD
αi
N ηn, wh

)
−
(

m

∑
i=1

biD
αi
N θn, divwh

)
= 0, ∀wh ∈ Wh. (37)

Choosing vh =
m

∑
i=1

biD
αi
N θn and wh = ηn in (30) (a) and (37), respectively, we can obtain

‖
m

∑
i=1

biD
αi

Nθn ‖
2

+

(
A−1

m

∑
i=1

biD
αi

Nηn, ηn

)

=−
(

m

∑
i=1

biD
αi

Nρn,
m

∑
i=1

biD
αi

Nθn

)
−
(

p(ρn + θn),
m

∑
i=1

biD
αi

Nθn

)
−
(

m

∑
i=1

biQ
n
αi

,
m

∑
i=1

biD
αi

Nθn

)
.

(38)

Using Lemma 2, we have

‖
m

∑
i=1

biD
αi
N θn‖2 +

1
2

m

∑
i=1

bi

Γ(2 − αi)
[d̃n

αi ,n

(
A−1ηn, ηn

)
−

n−1

∑
k=0

d̃n
αi ,k

(
A−1

(
ηn − ηk, ηn − ηk

)]

=−1
2

m

∑
i=1

bi

Γ(2 − αi)

n−1

∑
k=0

d̃n
αi ,k

(
A−1ηk, ηk

)
−
(

m

∑
i=1

biD
αi
N ρn,

m

∑
i=1

biD
αi
N θn

)

−
(

m

∑
i=1

biQ
n
αi

,
m

∑
i=1

biD
αi
N θn

)
−
(

p(ρn + θn),
m

∑
i=1

biD
αi
N θn

)
.

(39)
Noting that d̃n

αi ,k
< 0, 0 < k ≤ n − 1 and using Lemma 1, we obtain

‖
m

∑
i=1

biD
αi
N θn ‖

2

+
1
2

m

∑
i=1

bi

Γ(2 − αi)
d̃n

αi ,n

(
A−1ηn, ηn

)

≤−1
2

m

∑
i=1

bi

Γ(2 − αi)

n−1

∑
k=0

d̃n
αi ,k

(
A−1ηk, ηk

)
−
(

m

∑
i=1

biD
αi
N ρn,

m

∑
i=1

biD
αi
N θn

)

−
(

m

∑
i=1

biQ
n
αi

,
m

∑
i=1

biD
αi
N θn

)
−
(

p(ρn + θn),
m

∑
i=1

biD
αi
N θn

)
.

(40)
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Applying the Cauchy–Schwarz and the Young inequality in (40) yields

‖
m

∑
i=1

biD
αi
N θn ‖

2

+
1
2

m

∑
i=1

bi

Γ(2 − αi)
d̃n

αi ,n

(
A−1ηn, ηn

)

≤−1
2

m

∑
i=1

bi

Γ(2 − αi)

n−1

∑
k=0

d̃n
αi ,k

(
A−1ηk, ηk

)
+

1
2
‖

m

∑
i=1

biD
α
Nθn ‖

2

+2

(
‖

m

∑
i=1

biD
αi
N ρn ‖+ ‖

m

∑
i=1

biQ
n
αi
‖

2

+ ‖ p ‖2
∞(‖ ρn ‖2 + ‖ θn ‖2)

)
.

(41)

Using Lemmas 4 and 5, we obtain

m

∑
i=1

bi

Γ(2 − αi)
d̃n

αi ,n

(
A−1ηn, ηn

)

≤−
m

∑
i=1

bi

Γ(2 − αi)

n−1

∑
k=0

d̃n
αi ,k

(
A−1ηk, ηk

)
+ C

(
N−2(2−α1) + h2r+2

)
.

(42)

Noting that η0 = 0 and using Lemma 3, we obtain

‖ ηn ‖ ≤ C
(

hr+1 + N−(2−α1)
)

. (43)

We now estimate ‖ λn − λn
h ‖H(div,Ω). Taking vh =

m

∑
i=1

biD
αi
N θn and wh = ηn in

(30) (a) and (37), respectively, we have

‖ divηn ‖2=−
(
A−1

m

∑
i=1

biD
αi
N ηn, ηn

)
−
(

m

∑
i=1

biD
αi
N ρn, divηn

)

−(p(ρn + θn), divηn)−
(

m

∑
i=1

biQ
n
αi

, divηn

)
.

(44)

For the term −
(
A−1

m

∑
i=1

biD
αi
N ηn, ηn

)
, noting that

n−1
∑

k=0

(
−d̃n

αi ,k

)
= T−αi Nαi , we obtain

−
(
A−1

m

∑
i=1

biD
αi

Nηn, ηn

)
=−

m

∑
i=1

bi

Γ(2 − αi)

(
n−1

∑
k=0

d̃n
αi ,k

(
A−1ηk, ηn

)
+ d̃n

αi ,n

(
A−1ηn, ηn

))

≤μ1

m

∑
i=1

bi

Γ(2 − αi)

n−1

∑
k=0

(
−d̃n

αi ,k

)
‖ ηk ‖‖ ηn ‖

≤C
m

∑
i=1

bi

Γ(2 − αi)
T−αi Nαi

(
N−(2−α1) + hr+1

)2
.

(45)

Then, it holds from (45) that

‖ divηn ‖2=2

(
‖

m

∑
i=1

biD
αi
N ρn ‖+ ‖

m

∑
i=1

biQ
n
αi
‖

2

+ ‖ p ‖2
∞(‖ ρn ‖2 + ‖ θn ‖2)

)

+C
m

∑
i=1

bi

Γ(2 − αi)
T−αi Nαi

(
N−(2−α1) + hr+1

)2
+

1
2
‖ divηn ‖2.

(46)

Using Lemmas 4 and 5, we have

‖ divηn ‖≤ C
(

1 + N
αm
2

)(
hr+1 + N−(2−α1)

)
. (47)

Then, we finish the proof. �
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Remark 3. (I) For variables u and λ, we define the discrete norms of the errors as follows:

‖ u−uh ‖L̂∞(L2(Ω))= max
1≤n≤N

‖ u(tn)− un
h ‖,

‖ λ−λh ‖
L̂∞((L2(Ω))

2
)
= max

1≤n≤N
‖ λ(tn)− λn

h ‖,

‖ λ−λh ‖L̂∞(H(div,Ω))= max
1≤n≤N

‖ λ(tn)− λn
h ‖H(div,Ω).

From Theorem 3, we obtain the optimal a priori error estimate results for u in the discrete

L∞
(

L2(Ω)
)

norm and λ in the discrete L∞
((

L2(Ω)
)2
)

norm and obtain the suboptimal error

estimate for λ in the discrete L∞(H(div, Ω)) norm. In the actual calculation in the next section, we
achieve the optimal convergence rates for variables u and λ based on the above discrete norms.

(II) It should be pointed out that the solutions of many FPDEs have an initial layer at t = 0
(see [42,43]). To overcome this difficulty, some scholars have adopted nonuniform mesh methods

and achieved excellent results [24,26,42,44–46]. Moreover, it is noted that
{

ξk : 0 ≤ k ≤ N} in

Lemma 3 is required to be a nondecreasing positive sequence, so the error estimates for the MFE
scheme (5)–(6) with the temporal nonuniform method should adopt some other techniques. It is
gratifying that the numerical results in Example 3 show that the MFE scheme (5)–(6) with the
temporal graded mesh is feasible and effective.

6. Numerical Examples

In this section, we given three test examples to verify the effectiveness and convergence
accuracy of the proposed MFE scheme (5)–(6) and adopt the lowest-order Raviart–Thomas
MFE space for variables u and λ in the numerical experiments.

Example 1. Consider the following two-term TFRD equation:

⎧
⎪⎨
⎪⎩

Dα1
t u(x, t) + Dα2

t u(x, t)− ∆u(x, t) + p(x)u(x, t) = f (x, t), (x, t) ∈ Ω × J,

u(x, t) = 0, (x, t) ∈ ∂Ω × J,

u(x, 0) = u0(x), x ∈ Ω,

(48)

where J = (0, 1], Ω = (0, 1)2, p(x) = 1 + x2
1 + x2

2, x = (x1, x2) ∈ Ω, u(x, 0) = 0, and the
source function f is taken by

f (x, t) =

(
Γ(3 + α1 + α2)

Γ(3 + α2)
t2+α2+

Γ(3 + α1 + α2)

Γ(3 + α1)
t2+α1+

(
2π2+p(x)

)
t2+α1+α2

)

× sin(πx1) sin(πx2).

And we can find the analytical solutions for variables u and λ as follows:

u(x, t) = t2+α1+α2 sin(πx1) sin(πx2),

λ(x, t) = −πt2+α1+α2(cos(πx1) sin(πx2), sin(πx1) cos(πx2)).

In the numerical simulation, we select fractional parameters α1 = 0.9, 0.7, 0.5 and
α2 = 0.1, 0.4 in Equation (48) and know that among these different fractional parameters,
the convergence rates are only related to the largest fractional parameter α1 from Theorem
3. By taking N = 5, 8, 10, 16 and the corresponding h =

√
2/N2−α1 , we give the error

results and convergence rates in Tables 1–3 for the MFE scheme (5)–(6), which show that
the convergence rates in the temporal direction for u (in the discrete L∞

(
L2(Ω)

)
norm) and

λ (in the discrete L∞
((

L2(Ω)
)2
)

and L∞(H(div, Ω)) norms) are close to 2 − α1. Moreover,

in order to test convergence rates in the spatial direction, by fixing N = 100 and taking
h =

√
2/4,

√
2/8,

√
2/16,

√
2/32, we give the error results and convergence rates in

Tables 4–6, which show that the convergence rates in the spatial direction for u (in the
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discrete L∞
(

L2(Ω)
)

norm) and λ (in the discrete L∞
((

L2(Ω)
)2
)

and L∞(H(div, Ω)) norms)

are close to 1.

Table 1. Numerical results with h ≈
√

2/N2−α1 and α1 = 0.9 in Example 1.

α2 N u–L̂
∞

(L2) Rates λ–L̂
∞

((L2)
2
) Rates λ–L̂

∞
(H(div)) Rates

0.1 5 8.6930 × 10−2 − 3.3630 × 10−1 − 1.7545 × 10+0 −
8 5.2424 × 10−2 1.0760 2.0229 × 10−1 1.0814 1.0569 × 10+0 1.0784
10 4.0389 × 10−2 1.1687 1.5578 × 10−1 1.1709 8.1390 × 10−1 1.1708
16 2.3908 × 10−2 1.1157 9.2174 × 10−2 1.1165 4.8141 × 10−1 1.1172

0.4 5 8.7218 × 10−2 − 3.3776 × 10−1 − 1.7631 × 10+0 −
8 5.2624 × 10−2 1.0750 2.0332 × 10−1 1.0799 1.0619 × 10+0 1.0786
10 4.0555 × 10−2 1.1674 1.5663 × 10−1 1.1692 8.1786 × 10−1 1.1704
16 2.4011 × 10−2 1.1153 9.2701 × 10−2 1.1160 4.8371 × 10−1 1.1175

Table 2. Numerical results with h ≈
√

2/N2−α1 and α1 = 0.7 in Example 1.

α2 N u–L̂
∞

(L2) Rates λ–L̂
∞

((L2)
2
) Rates λ–L̂

∞
(H(div)) Rates

0.1 5 6.5262 × 10−2 − 2.5184 × 10−1 − 1.3146 × 10+0 −
8 3.4916 × 10−2 1.3308 1.3451 × 10−1 1.3344 7.0291 × 10−1 1.3321
10 2.6204 × 10−2 1.2863 1.0092 × 10−1 1.2875 5.2740 × 10−1 1.2873
16 1.4175 × 10−2 1.3073 5.4581 × 10−2 1.3077 2.8520 × 10−1 1.3080

0.4 5 6.5379 × 10−2 − 2.5244 × 10−1 − 1.3184 × 10+0 −
8 3.4998 × 10−2 1.3296 1.3493 × 10−1 1.3328 7.0499 × 10−1 1.3318
10 2.6269 × 10−2 1.2858 1.0125 × 10−1 1.2869 5.2895 × 10−1 1.2875
16 1.4212 × 10−2 1.3070 5.4771 × 10−2 1.3073 2.8602 × 10−1 1.3081

Table 3. Numerical results with h ≈
√

2/N2−α1 and α1 = 0.5 in Example 1.

α2 N u–L̂
∞

(L2) Rates λ–L̂
∞

((L2)
2
) Rates λ–L̂

∞
(H(div)) Rates

0.1 5 4.7518 × 10−2 − 1.8311 × 10−1 − 9.5625 × 10−1 −
8 2.2765 × 10−2 1.5657 8.7633 × 10−2 1.5679 4.5800 × 10−1 1.5663
10 1.6367 × 10−2 1.4786 6.2996 × 10−2 1.4792 3.2925 × 10−1 1.4791
16 8.1859 × 10−3 1.4742 3.1504 × 10−2 1.4743 1.6465 × 10−1 1.4744

0.4 5 4.7568 × 10−2 − 1.8337 × 10−1 − 9.5799 × 10−1 −
8 2.2802 × 10−2 1.5645 8.7824 × 10−2 1.5662 4.5893 × 10−1 1.5658
10 1.6396 × 10−2 1.4781 6.3145 × 10−2 1.4785 3.2993 × 10−1 1.4790
16 8.2016 × 10−3 1.4738 3.1585 × 10−2 1.4739 1.6499 × 10−1 1.4744

Table 4. Numerical results with τ = T/N = 1/100 and α1 = 0.9 in Example 1.

α2 h u–L̂
∞

(L2) Rates λ–L̂
∞

((L2)
2
) Rates λ–L̂

∞
(H(div)) Rates

0.1
√

2/4 1.2927× 10−1 − 5.0254× 10−1 − 2.5970× 10+0 −√
2/8 6.5234× 10−2 0.9867 2.5171× 10−1 0.9975 1.3118× 10+0 0.9853√

2/16 3.2696× 10−2 0.9965 1.2589× 10−1 0.9996 6.5762× 10−1 0.9963√
2/32 1.6361× 10−2 0.9989 6.2964× 10−2 0.9996 3.2908× 10−1 0.9988

0.4
√

2/4 1.2926× 10−1 − 5.0244× 10−1 − 2.5971× 10+0 −√
2/8 6.5231× 10−2 0.9866 2.5169× 10−1 0.9973 1.3119× 10+0 0.9853√

2/16 3.2696× 10−2 0.9964 1.2589× 10−1 0.9995 6.5766× 10−1 0.9962√
2/32 1.6363× 10−2 0.9987 6.2973× 10−2 0.9994 3.2913× 10−1 0.9987
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Table 5. Numerical results with τ = T/N = 1/100 and α1 = 0.7 in Example 1.

α2 h u–L̂
∞

(L2) Rates λ–L̂
∞

((L2)
2
) Rates λ–L̂

∞
(H(div)) Rates

0.1
√

2/4 1.2929 × 10−1 − 5.0266 × 10−1 − 2.5969 × 10+0 −√
2/8 6.5241 × 10−2 0.9867 2.5174 × 10−1 0.9976 1.3118 × 10+0 0.9853√

2/16 3.2698 × 10−2 0.9966 1.2590 × 10−1 0.9997 6.5757 × 10−1 0.9963√
2/32 1.6359 × 10−2 0.9991 6.2954 × 10−2 0.9999 3.2900 × 10−1 0.9991

0.4
√

2/4 1.2928 × 10−1 − 5.0258 × 10−1 − 2.5970 × 10+0 −√
2/8 6.5239 × 10−2 0.9867 2.5173 × 10−1 0.9975 1.3118 × 10+0 0.9853√

2/16 3.2697 × 10−2 0.9966 1.2590 × 10−1 0.9996 6.5758 × 10−1 0.9963√
2/32 1.6359 × 10−2 0.9991 6.2954 × 10−2 0.9999 3.2900 × 10−1 0.9990

Table 6. Numerical results with τ = T/N = 1/100 and α1 = 0.5 in Example 1.

α2 h u–L̂
∞

(L2) Rates λ–L̂
∞

((L2)
2
) Rates λ–L̂

∞
(H(div)) Rates

0.1
√

2/4 1.2930 × 10−1 − 5.0273 × 10−1 − 2.5969 × 10+0 −√
2/8 6.5243 × 10−2 0.9868 2.5176 × 10−1 0.9977 1.3118 × 10+0 0.9852√

2/16 3.2699 × 10−2 0.9966 1.2591 × 10−1 0.9997 6.5756 × 10−1 0.9963√
2/32 1.6359 × 10−2 0.9991 6.2955 × 10−2 0.9999 3.2899 × 10−1 0.9991

0.4
√

2/4 1.2929 × 10−1 − 5.0266 × 10−1 − 2.5969 × 10+0 −√
2/8 6.5242 × 10−2 0.9867 2.5175 × 10−1 0.9976 1.3118 × 10+0 0.9853√

2/16 3.2698 × 10−2 0.9966 1.2590 × 10−1 0.9997 6.5757 × 10−1 0.9963√
2/32 1.6359 × 10−2 0.9991 6.2955 × 10−2 0.9999 3.2899 × 10−1 0.9991

Example 2. Consider the following three-term TFRD equation:

⎧
⎪⎨
⎪⎩

Dα1
t u(x, t) + Dα2

t u(x, t) + Dα3
t u(x, t)− ∆u(x, t) + p(x)u(x, t) = f (x, t), (x, t) ∈ Ω × J,

u (x, t) = 0, (x, t) ∈ ∂Ω × J,

u(x, 0) = u0(x), x ∈ Ω,

(49)

where the spatial domain Ω, temporal domain J, coefficient p(x), and initial data u(x, 0) are as in
Example 1 and the source function f is taken by

f (x, t) =

(
Γ(3 + α1 + α2 + α3)

Γ(3 + α2 + α3)
t2+α2+α3 +

Γ(3 + α1 + α2 + α3)

Γ(3 + α1 + α3)
t2+α1+α3

+
Γ(3 + α1 + α2 + α3)

Γ(3 + α1 + α2)
t2+α1+α2 +

(
2π2 + p(x)

)
t2+α1+α2+α3

)
sin(πx1) sin(πx2).

And we can also find the analytical solutions for variables u and λ as follows:

u(x, t) = t2+α1+α2+α3 sin(πx1) sin(πx2),

λ(x, t) = −πt2+α1+α2+α3(cos(πx1) sin(πx2), sin(πx1) cos(πx2)).

In this example, since the Equation (49) contains three Caputo time-fractional
derivative terms, we specifically take the fractional parameters α1 = 0.9, 0.7, 0.5 and
(α2, α3) = (0.4, 0.2), (0.3, 0.1). From Theorem 3, we also point out that the convergence
rates are only related to the maximum fractional parameter α1. In Tables 7–9, for different
N = 5, 8, 10, 16, we give the error results and convergence rates for the MFE scheme (5)–(6),
where the spatial grid sizes are also taken as h =

√
2/N2−α1 . We can also see that the

convergence rates in the temporal direction for u (in the discrete L∞
(

L2(Ω)
)

norm) and λ

(in the discrete L∞
((

L2(Ω)
)2
)

and L∞(H(div, Ω)) norms) are close to 2 − α1. Furthermore,

in Tables 10–12, we also fix N = 100 and take h =
√

2/4,
√

2/8,
√

2/16,
√

2/32, give
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the error results and convergence rates, and see that the convergence rates in the spatial
direction for u and λ in the above corresponding discrete norms are also close to 1.

Table 7. Numerical results with h ≈
√

2/N2−α1 and α1 = 0.9 in Example 2.

α2 α3 N u–L̂
∞

(L2) Rates λ–L̂
∞

((L2)
2
) Rates λ–L̂

∞
(H(div)) Rates

0.4 0.2 5 8.7400 × 10−2 − 3.3868 × 10−1 − 1.7681 × 10+0 −
8 5.2741 × 10−2 1.0747 2.0392 × 10−1 1.0795 1.0648 × 10+0 1.0790
10 4.0650 × 10−2 1.1670 1.5711 × 10−1 1.1686 8.2004 × 10−1 1.1704
16 2.4067 × 10−2 1.1152 9.2988 × 10−2 1.1159 4.8494 × 10−1 1.1177

0.3 0.1 5 8.7138 × 10−2 − 3.3735 × 10−1 − 1.7608 × 10+0 −
8 5.2567 × 10−2 1.0753 2.0303 × 10−1 1.0804 1.0605 × 10+0 1.0788
10 4.0507 × 10−2 1.1679 1.5638 × 10−1 1.1698 8.1673 × 10−1 1.1706
16 2.3980 × 10−2 1.1154 9.2546 × 10−2 1.1162 4.8304 × 10−1 1.1175

Table 8. Numerical results with h ≈
√

2/N2−α1 and α1 = 0.7 in Example 2.

α2 α3 N u–L̂
∞

(L2) Rates λ–L̂
∞

((L2)
2
) Rates λ–L̂

∞
(H(div)) Rates

0.4 0.2 5 6.5465 × 10−2 − 2.5288 × 10−1 − 1.3208 × 10+0 −
8 3.5052 × 10−2 1.3291 1.3521 × 10−1 1.3321 7.0629 × 10−1 1.3319
10 2.6310 × 10−2 1.2857 1.0146 × 10−1 1.2868 5.2989 × 10−1 1.2877
16 1.4234 × 10−2 1.3070 5.4886 × 10−2 1.3073 2.8651 × 10−1 1.3083

0.3 0.1 5 6.5343 × 10−2 − 2.5225 × 10−1 − 1.3173 × 10+0 −
8 3.4972 × 10−2 1.3300 1.3479 × 10−1 1.3334 7.0434 × 10−1 1.3321
10 2.6247 × 10−2 1.2860 1.0114 × 10−1 1.2872 5.2845 × 10−1 1.2876
16 1.4200 × 10−2 1.3071 5.4707 × 10−2 1.3075 2.8575 × 10−1 1.3082

Table 9. Numerical results with h ≈
√

2/N2−α1 and α1 = 0.5 in Example 2.

α2 α3 N u–L̂
∞

(L2) Rates λ–L̂
∞

((L2)
2
) Rates λ–L̂

∞
(H(div)) Rates

0.4 0.2 5 4.7614 × 10−2 − 1.8360 × 10−1 − 9.5930 × 10−1 −
8 2.2831 × 10−2 1.5638 8.7972 × 10−2 1.5654 4.5961 × 10−1 1.5656
10 1.6417 × 10−2 1.4779 6.3255 × 10−2 1.4782 3.3041 × 10−1 1.4790
16 8.2126 × 10−3 1.4738 3.1641 × 10−2 1.4738 1.6523 × 10−1 1.4745

0.3 0.1 5 4.7550 × 10−2 − 1.8327 × 10−1 − 9.5743 × 10−1 −
8 2.2788 × 10−2 1.5650 8.7752 × 10−2 1.5669 4.5859 × 10−1 1.5661
10 1.6385 × 10−2 1.4783 6.3087 × 10−2 1.4788 3.2967 × 10−1 1.4791
16 8.1952 × 10−3 1.4740 3.1552 × 10−2 1.4742 1.6486 × 10−1 1.4745

Table 10. Numerical results with τ = T/N = 1/100 and α1 = 0.9 in Example 2.

α2 α3 h u–L̂
∞

(L2) Rates λ–L̂
∞

((L2)
2
) Rates λ–L̂

∞
(H(div)) Rates

0.4 0.2
√

2/4 1.2924 × 10−1 − 5.0230 × 10−1 − 2.5973 × 10+0 −√
2/8 6.5229 × 10−2 0.9865 2.5168 × 10−1 0.9970 1.3119 × 10+0 0.9853√

2/16 3.2696 × 10−2 0.9964 1.2589 × 10−1 0.9994 6.5768 × 10−1 0.9962√
2/32 1.6364 × 10−2 0.9986 6.2979 × 10−2 0.9992 3.2916 × 10−1 0.9986

0.3 0.1
√

2/4 1.2925 × 10−1 − 5.0236 × 10−1 − 2.5972 × 10+0 −√
2/8 6.5231 × 10−2 0.9865 2.5169 × 10−1 0.9971 1.3119 × 10+0 0.9853√

2/16 3.2696 × 10−2 0.9964 1.2589 × 10−1 0.9995 6.5765 × 10−1 0.9962√
2/32 1.6362 × 10−2 0.9988 6.2971 × 10−2 0.9994 3.2912 × 10−1 0.9987
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Table 11. Numerical results with τ = T/N = 1/100 and α1 = 0.7 in Example 2.

α2 α3 h u–L̂
∞

(L2) Rates λ–L̂
∞

((L2)
2
) Rates λ–L̂

∞
(H(div)) Rates

0.4 0.2
√

2/4 1.2926 × 10−1 − 5.0244 × 10−1 − 2.5971 × 10+0 −√
2/8 6.5237 × 10−2 0.9866 2.5172 × 10−1 0.9972 1.3118 × 10+0 0.9853√

2/16 3.2697 × 10−2 0.9965 1.2590 × 10−1 0.9996 6.5758 × 10−1 0.9963√
2/32 1.6359 × 10−2 0.9991 6.2954 × 10−2 0.9999 3.2901 × 10−1 0.9990

0.3 0.1
√

2/4 1.2927 × 10−1 − 5.0249 × 10−1 − 2.5970 × 10+0 −√
2/8 6.5238 × 10−2 0.9866 2.5172 × 10−1 0.9973 1.3118 × 10+0 0.9853√

2/16 3.2697 × 10−2 0.9965 1.2590 × 10−1 0.9996 6.5758 × 10−1 0.9963√
2/32 1.6359 × 10−2 0.9991 6.2954 × 10−2 0.9999 3.2900 × 10−1 0.9991

Table 12. Numerical results with τ = T/N = 1/100 and α1 = 0.5 in Example 2.

α2 α3 h u–L̂
∞

(L2) Rates λ–L̂
∞

((L2)
2
) Rates λ–L̂

∞
(H(div)) Rates

0.4 0.2
√

2/4 1.2927 × 10−1 − 5.0252 × 10−1 − 2.5970 × 10+0 −√
2/8 6.5240 × 10−2 0.9866 2.5173 × 10−1 0.9973 1.3118 × 10+0 0.9853√

2/16 3.2698 × 10−2 0.9965 1.2590 × 10−1 0.9996 6.5757 × 10−1 0.9963√
2/32 1.6359 × 10−2 0.9991 6.2955 × 10−2 0.9999 3.2899 × 10−1 0.9991

0.3 0.1
√

2/4 1.2928 × 10−1 − 5.0257 × 10−1 − 2.5970 × 10+0 −√
2/8 6.5241 × 10−2 0.9866 2.5174 × 10−1 0.9974 1.3118 × 10+0 0.9853√

2/16 3.2698 × 10−2 0.9966 1.2590 × 10−1 0.9996 6.5757 × 10−1 0.9963√
2/32 1.6359 × 10−2 0.9991 6.2955 × 10−2 0.9999 3.2899 × 10−1 0.9991

Based on the numerical results in Tables 1–12 obtained from the above two test
examples, we can see that the convergence rates in the spatial and temporal directions

for u (in the discrete L∞
(

L2(Ω)
)

norm) and λ (in the discrete L∞
((

L2(Ω)
)2
)

norm) are

in agreement with the theoretical results in Theorem 3, and those for λ (in the discrete
L∞(H(div, Ω)) norm) are higher than the theoretical result. These results fully demonstrate
that the proposed MFE method for the multi-term TFRD equations is effective.

Example 3. Consider the two-term TFRD equation in Example 1 with weak regularity solutions
near the initial time t = 0, where the source function f is taken by

f (x, t) =

(
2

Γ(3 − α1)
t2−α1 + Γ(1 + α1) +

Γ(2 + α2)

Γ(2 + α2 − α1)
t1+α2−α1

+
2

Γ(3 − α2)
t2−α2 +

Γ(1 + α1)

Γ(1 + α1 − α2)
tα1−α2 + Γ(2 + α2)t

+
(

2π2 + p(x)
)(

t2 + tα1 + t1+α2
))

sin(πx1) sin(πx2).

And we can also find the analytical solutions for variables u and λ as follows:

u(x, t) =
(

t2 + tα1 + t1+α2
)

sin(πx1) sin(πx2),

λ(x, t) = −π
(

t2 + tα1 + t1+α2
)
(cos(πx1) sin(πx2), sin(πx1) cos(πx2)).

In this example, we will select the graded mesh to discretize the interval [0, T] and set
tn = T(n/N)γ, for n = 0, 1, 2, · · · , N, where constant γ ≥ 1 is the temporal graded mesh pa-
rameter. The ideal optimal error estimates for u (in the discrete L∞

(
L2(Ω)

)
norm) and λ (in

the discrete L∞
((

L2(Ω)
)2
)

and L∞(H(div, Ω)) norms) should be O
(

N−min{γα1,2−α1} + h
)

.

Here, we will mainly test the convergence rates in the temporal direction with the graded
mesh parameter γ = 1 and (2 − α1)/α1. We first conduct numerical experiments with
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γ = 1. Then, the optimal convergence rate in the temporal direction is α1. For fractional
parameters α1 = 0.9, 0.7, 0.5 and α2 = 0.1, 0.4, we take the time mesh parameter N = 20, 40,
80, 160 and special spatial grid parameters: (i) when α1 = 0.9, take h ≈ 2

√
2/Nα1 ; (ii) when

α1 = 0.7, take h ≈
√

2/Nα1 ; (iii) when α1 = 0.5, take h ≈
√

2/(2Nα1). Then, we give the
numerical results in Tables 13–15, which show that the convergence rates in the temporal

direction for u (in the discrete L∞
(

L2(Ω)
)

norm) and λ (in the discrete L∞
((

L2(Ω)
)2
)

and

L∞(H(div, Ω)) norms) are close to α1.

Table 13. Numerical results with α1 = 0.9 and graded mesh parameter γ = 1 in Example 3.

α2 N u–L̂
∞

(L2) Rates λ–L̂
∞

((L2)
2
) Rates λ–L̂

∞
(H(div)) Rates

0.1 20 1.9572 × 10−1 − 7.5520 × 10−1 − 3.9354 × 10+0 −
40 1.1208 × 10−1 0.8042 4.3165 × 10−1 0.8070 2.2539 × 10+0 0.8041
80 6.0396 × 10−2 0.8920 2.3245 × 10−1 0.8930 1.2146 × 10+0 0.8920

160 3.2722 × 10−2 0.8842 1.2591 × 10−1 0.8845 6.5806 × 10−1 0.8842
0.4 20 1.9571 × 10−1 − 7.5516 × 10−1 − 3.9354 × 10+0 −

40 1.1208 × 10−1 0.8042 4.3164 × 10−1 0.8069 2.2540 × 10+0 0.8041
80 6.0396 × 10−2 0.8920 2.3244 × 10−1 0.8929 1.2146 × 10+0 0.8920

160 3.2722 × 10−2 0.8842 1.2591 × 10−1 0.8845 6.5806 × 10−1 0.8842

Table 14. Numerical results with α1 = 0.7 and graded mesh parameter γ = 1 in Example 3.

α2 N u–L̂
∞

(L2) Rates λ–L̂
∞

((L2)
2
) Rates λ–L̂

∞
(H(div)) Rates

0.1 20 1.9573 × 10−1 − 7.5526 × 10−1 − 3.9353 × 10+0 −
40 1.2068 × 10−1 0.6976 4.6487 × 10−1 0.7002 2.4269 × 10+0 0.6974
80 7.4765 × 10−2 0.6908 2.8779 × 10−1 0.6918 1.5035 × 10+0 0.6907

160 4.4872 × 10−2 0.7365 1.7268 × 10−1 0.7369 9.0241 × 10−1 0.7365
0.4 20 1.9572 × 10−1 − 7.5523 × 10−1 − 3.9354 × 10+0 −

40 1.2068 × 10−1 0.6976 4.6486 × 10−1 0.7001 2.4269 × 10+0 0.6974
80 7.4765 × 10−2 0.6908 2.8779 × 10−1 0.6918 1.5035 × 10+0 0.6907

160 4.4872 × 10−2 0.7365 1.7268 × 10−1 0.7369 9.0241 × 10−1 0.7365

Table 15. Numerical results with α1 = 0.5 and graded mesh parameter γ = 1 in Example 3.

α2 N u–L̂
∞

(L2) Rates λ–L̂
∞

((L2)
2
) Rates λ–L̂

∞
(H(div)) Rates

0.1 20 1.7410 × 10−1 − 6.7141 × 10−1 − 3.5006 × 10+0 −
40 1.2069 × 10−1 0.5286 4.6487 × 10−1 0.5303 2.4269 × 10+0 0.5285
80 8.7212 × 10−2 0.4687 3.3576 × 10−1 0.4694 1.7538 × 10+0 0.4686

160 6.2812 × 10−2 0.4735 2.4175 × 10−1 0.4739 1.2632 × 10+0 0.4735
0.4 20 1.7410 × 10−1 − 6.7139 × 10−1 − 3.5006 × 10+0 −

40 1.2069 × 10−1 0.5286 4.6487 × 10−1 0.5303 2.4269 × 10+0 0.5285
80 8.7212 × 10−2 0.4687 3.3576 × 10−1 0.4694 1.7538 × 10+0 0.4686

160 6.2812 × 10−2 0.4735 2.4175 × 10−1 0.4739 1.2632 × 10+0 0.4735

Next, we conduct numerical experiments with γ = (2 − α1)/α1. Then, the optimal
convergence rate is 2− α1. We take the time mesh parameter N = 5, 8, 10, 16 and the spatial
grid parameter h =

√
2/N2−α1 . Then, we give the numerical results in Tables 16–18 and

find that the convergence rates in the temporal direction for u (in the discrete L∞
(

L2(Ω)
)

norm) and λ (in the discrete L∞
((

L2(Ω)
)2
)

and L∞(H(div, Ω)) norms) are close to 2 − α1.

Based on the above discussion, we know that the MFE scheme (5)–(6) with the temporal
graded mesh for solving the multi-term TFRD equations with the initial layer is also feasible
and effective.
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Table 16. Numerical results with α1 = 0.9 and graded mesh parameter γ = 2−α1
α1

in Example 3.

α2 N u–L̂
∞

(L2) Rates λ–L̂
∞

((L2)
2
) Rates λ–L̂

∞
(H(div)) Rates

0.1 5 2.6024 × 10−1 − 1.0062 × 10+0 − 5.2342 × 10+0 −
8 1.5673 × 10−1 1.0789 6.0412 × 10−1 1.0855 3.1526 × 10+0 1.0787
10 1.2067 × 10−1 1.1718 4.6479 × 10−1 1.1750 2.4273 × 10+0 1.1718
16 7.1368 × 10−2 1.1175 2.7470 × 10−1 1.1189 1.4355 × 10+0 1.1176

0.4 5 2.6021 × 10−1 − 1.0060 × 10+0 − 5.2351 × 10+0 −
8 1.5673 × 10−1 1.0787 6.0410 × 10−1 1.0852 3.1531 × 10+0 1.0787
10 1.2067 × 10−1 1.1716 4.6479 × 10−1 1.1748 2.4276 × 10+0 1.1718
16 7.1372 × 10−2 1.1174 2.7472 × 10−1 1.1188 1.4357 × 10+0 1.1176

Table 17. Numerical results with α1 = 0.7 and graded mesh parameter γ = 2−α1
α1

in Example 3.

α2 N u–L̂
∞

(L2) Rates λ–L̂
∞

((L2)
2
) Rates λ–L̂

∞
(H(div)) Rates

0.1 5 1.9568 × 10−1 − 7.5499 × 10−1 − 3.9360 × 10+0 −
8 1.0462 × 10−1 1.3323 4.0284 × 10−1 1.3365 2.1043 × 10+0 1.3323
10 7.8497 × 10−2 1.2872 3.0217 × 10−1 1.2887 1.5789 × 10+0 1.2873
16 4.2450 × 10−2 1.3079 1.6336 × 10−1 1.3086 8.5380 × 10−1 1.3081

0.4 5 1.9566 × 10−1 − 7.5492 × 10−1 − 3.9370 × 10+0 −
8 1.0462 × 10−1 1.3320 4.0289 × 10−1 1.3361 2.1049 × 10+0 1.3323
10 7.8506 × 10−2 1.2870 3.0221 × 10−1 1.2885 1.5793 × 10+0 1.2874
16 4.2457 × 10−2 1.3078 1.6339 × 10−1 1.3084 8.5400 × 10−1 1.3081

Table 18. Numerical results with α1 = 0.5 and graded mesh parameter γ = 2−α1
α1

in Example 3.

α2 N u–L̂
∞

(L2) Rates λ–L̂
∞

((L2)
2
) Rates λ–L̂

∞
(H(div)) Rates

0.1 5 1.4253 × 10−1 − 5.4923 × 10−1 − 2.8673 × 10+0 −
8 6.8272 × 10−2 1.5661 2.6278 × 10−1 1.5685 1.3733 × 10+0 1.5663
10 4.9083 × 10−2 1.4788 1.8890 × 10−1 1.4794 9.8727 × 10−1 1.4790
16 2.4548 × 10−2 1.4742 9.4464 × 10−2 1.4744 4.9373 × 10−1 1.4744

0.4 5 1.4255 × 10−1 − 5.4933 × 10−1 − 2.8688 × 10+0 −
8 6.8306 × 10−2 1.5654 2.6296 × 10−1 1.5675 1.3743 × 10+0 1.5659
10 4.9113 × 10−2 1.4783 1.8905 × 10−1 1.4788 9.8804 × 10−1 1.4787
16 2.4567 × 10−2 1.4739 9.4561 × 10−2 1.4740 4.9416 × 10−1 1.4742

7. Conclusions

This work presents a Raviart–Thomas MFE method for solving the multi-term TFRD
equations with variable coefficients by using the well-known L1 formula. The existence,
uniqueness, and unconditional stability of the discrete solution are discussed, and the
optimal a priori error estimates for u (in the discrete L∞

(
L2(Ω)

)
norm) and λ (in the

discrete L∞
((

L2(Ω)
)2
)

norm) and the suboptimal a priori error estimate for λ (in the

discrete L∞(H(div, Ω)) norm) are obtained in this work. In addition, some numerical
results are given to demonstrate the effectiveness of the proposed MFE method. In future
research, we will try to give theoretical analysis for the MFE method with the temporal
graded mesh to solve some FPDEs with the initial layer at t = 0 and apply the MFE method
to solve more FPDEs in scientific and engineering fields.
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Abstract: The modified second-grade fluid flow across a plate of semi-infinite extent, which is

initiated by the plate’s movement, is considered herein. The relaxation parameters and fractional

parameters are introduced to express the generalized constitutive relation. A convolution-based

absorbing boundary condition (ABC) is developed based on the artificial boundary method (ABM),

addressing issues related to the semi-infinite boundary. We adopt the finite difference method (FDM)

for deriving the numerical solution by employing the L1 scheme to approximate the fractional

derivative. To confirm the precision of this method, a source term is added to establish an exact

solution for verification purposes. A comparative evaluation of the ABC versus the direct truncated

boundary condition (DTBC) is conducted, with their effectiveness and soundness being visually

scrutinized and assessed. This study investigates the impact of the motion of plates at different fluid

flow velocities, focusing on the effects of dynamic elements influencing flow mechanisms and velocity.

This research’s primary conclusion is that a higher fractional parameter correlates with the fluid flow.

As relaxation parameters decrease, the delay effect intensifies and the fluid velocity decreases.

Keywords: absorbing boundary condition; second-grade fluid; fractional derivative; finite difference

method

1. Introduction

Viscoelastic fluid is widely used in petroleum exploitation, medicine, biology, and
other fields [1–3]. Viscoelastic fluid combines the viscosity of the fluid and the elasticity of
the elastic solid, which shows the complex behavior between them and makes it a typical
non-Newtonian fluid. Viscoelastic fluid has a time-dependent stress–strain response,
showing shear rate-dependent viscosity and elastic recovery after unloading. Second-
grade fluids are a specialized subclass of non-Newtonian fluids [4,5] which exhibit unique
viscoelastic characteristics. A feature of these fluids is that their velocity field includes
two derivatives within the correlation linking stress to strain, whereas the velocity field
of Newtonian fluid contains only a first-order derivative. To better understand the flow
characteristics of second-grade fluids, scholars often choose a simple model for analysis,
which is helpful to understand the motion nature of second-grade fluid more deeply and
provide theoretical support for related industrial applications. Ho et al. [6] investigated the
migration of rigid spheres in a flowing second-grade fluid by simplifying the fluid flow
problem between parallel plane walls. Khan et al. [7] gave an exact analytical solution
for the fluid flow of a generalized second-grade fluid between two walls perpendicular
to a flat plate. Tassaddiq [8] analyzed the flow of a second-grade fluid by simplifying the
problem to a non-constant flow of the incompressible fluid over an inclined plate with an
inclined magnetic field. Further studies are cited in references [9,10]. This paper focuses on
the behavior of generalized second-grade fluids over a semi-infinite plate which contains
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broad applications in various fields, as noted in references [11–14], including the flow of
biological fluids, liquid metals and alloys, plasma, and blood.

The traditional second-grade fluid constitutive relation is grounded in integer differ-
entials [15,16]. By considering the historical memory during their flow process, meaning
that their current state is not solely determined by the present stress state but is also influ-
enced by the stress history of the past, the fractional second-grade fluid is developed. The
fractional differential equations [17–20] surpass the capabilities of integer-based models
and offer a more precise capture of the historical dependency. Furthermore, the fractional
derivatives possess a nonlocal nature; the derivative value at any given instant is intimately
connected to the entire historical trajectory. This attribute equips fractional differential
equations with the ability to describe physical processes exhibiting long-range or spatially
extensive correlations [21]. The fractional operator addresses the significant inconsistencies
between classical integer differential models and experimental outcomes, which compen-
sates for their serious shortcomings. Consequently, it can achieve superior fitting results
with experimental data by utilizing a reduced number of parameters. Sene et al. [22]
used the double integration method to solve the fractional differential equation in the
two-level fluid model. Chan et al. [23] carried out research into the behavior of deformable
droplets when suspended within a second-grade fluid environment. Jiang et al. [24] made
contributions to the field by examining the unsteady magnetohydrodynamic flow of a
modified second-grade fluid by taking into account the Hall effect, as it pertains to move-
ment through porous media. For more research on fractional derivatives in the field of
viscoelastic fluids, the readers are encouraged to refer to [25–27]. In this work, we integrate
the fundamental equation governing fluid dynamics with a model representing a modified
second-grade fluid which includes the application of Riemann–Liouville time fractional
derivative (RLTFD) operators.

Numerical simulations, when analyzing flow mechanisms, can demonstrate the flow
properties of complex fluid models, eliminating the necessity of experimental procedures.
Within this study, the formulation of the equation is achieved through the application of the
FDM, as introduced in references [28,29]. The FDM is a numerical technique that divides a
continuous domain into discrete grids and approximates the equation at these grid points.
This method is adept at transforming a partial differential equation into a collection of
either linear or nonlinear algebraic equation. This conversion facilitates straightforward
numerical solutions that can be efficiently computed with the aid of computer systems.
The FDM is not only intuitive in concept and easy to implement in programming, but also
can flexibly handle problems with various boundary conditions and complex geometric
shapes. Mei et al. [30] studied the flow around a sphere with free flow velocity oscillation
and unsteady resistance under a finite Reynolds number by using FDM. Dennis et al. [31]
proposed a new FDM for calculating steady flow in curved pipes. Kim et al. [32] developed
a computational approach specifically tailored for the second-grade gradient theory of
incompressible fluid dynamics. For more related research, one can refer to [33–35]. In
addition, in the numerical simulation of the fractional derivatives, a variety of interpolation
approximation methods has been reported, such as Grünwald–Letnikov definition [36], the
L1 scheme [37], the L2 − 1σ scheme [38] and the fast algorithm [39].

The critical challenge in numerical methods pertains to the effective reduction of the
effects that the unbounded regions exert on computational outcomes. Historically, the
prevalent approach to dealing with the unbounded regions is through the employment of a
direct truncation method (DTM), as documented in reference [40]. This approach involves
selecting an exceedingly large value at the boundary, rather than attempting to define an
actual infinite boundary condition. The DTM is less favorable for performing computer-
based numerical simulations, notably for those that are extended over a long duration. In
this paper, we employ an alternative strategy referred to as the artificial boundary method
to establish the ABC. The core concept of this approach entails partitioning the unbounded
domain into two distinct regions: a confined computational zone, which is the internal
area, and an unbounded zone, representing the external area. The chosen boundary points
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need to ensure that the source term is compactly supported within a finite truncation
area. Subsequently, the relation at the truncation point is determined through the use of
the Laplace transform in the external region. The use of this approach retains the effect
exerted by the external area on the truncated boundary, which ensures the restricted area
has a more reasonable boundary condition. The mentioned approach has been utilized
extensively in various studies. For instance, Barucq et al. [41] analyzed the Helmholtz
equation numerically by using ABC. They conducted an in-depth analysis of the impact
of various parameters on these numerical results. Li et al. [42] solved the effective second-
grade Schrödinger equation with the FDM by constructing ABCs. Muhr et al. [43] applied
the ABC to address the Westervelt wave equation related to sound velocity potential, and
the effectiveness and efficiency were confirmed. Further information on ABC is available
in [44–46].

This paper studies the impulsive motion of a modified second-grade fluid on a plate
of semi-infinite extent by introducing an ABC. In Section 2, we propose the constitutive
relation and formulate the governing equation. Section 3 details the development and
construction of the ABC. In Section 4, the numerical framework for the governing equation,
along with its initial and boundary conditions (IBCs), is presented. In Section 5, four
numerical instances are provided, detailing numerical methods’ efficacy, the dynamic
parameters’ impacts on velocity, the ABC, and a comparison of this study with other
methods. Section 6 offers a summary of these findings.

2. The Construction of the Governing Equation

We are now focusing on an infinitely extended flat plate with a fluid situated on a
single side of the plate. In the initial state, the plate and the fluid above it remain stationary.
Suddenly, the flat plate initiates movement with a velocity denoted as uw(t). As Figure 1
shows, we use a coordinate system where the flow progresses in the x direction, while the y
direction is perpendicular to the plate. The positions of the plate are denoted as y = 0. The
fluid’s velocity on the surface of the plate is equal to the plate’s velocity, which considers the
no-slip condition. The fluid is regarded as a generalized second-grade fluid with stresses
that depend not only on the current strain rate, but also possibly on the historical one. We
neglect sidewall effects because the plate is considered to be infinitely long, such that the
flow problem is mainly controlled by the motion of the plate and the viscoelastic properties
of the fluid. In addition, the fluid is considered incompressible. The flow is supposed
to be laminar, and no turbulence occurs. Finally, the deformation of the fluid is small
and can be analyzed using linear theory. Collectively, these stipulations and suppositions
constitute the foundational framework upon which the problem’s analysis and resolution
are predicated.

Figure 1. Schematic diagram of fractional second-grade fluid flow problem on a plate of semi-
infinite extent.

The constitutive relation for a second-grade fluid satisfies [45]:

T = −pI + μA1 + α1A2 + α2A1
2 (1)
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in which the identity tensor is expressed as I, the hydrostatic pressure is expressed as p, the
stress tensor is expressed as T, μ represents the coefficients of viscosity, α1 and α2 denote as
the normal stress moduli, and the symbols A1 and A2 refer to the kinematic tensors [47]
separately described by the following equation.

A1 = ∇V + (∇V)T (2)

A2 =
∂A1

∂t
+ A1(∇V) + (∇V)TA1 (3)

in which ∂
∂t is indicative of the material time partial derivative, V expresses the velocity

vector field, and ∇ is the operator of the gradient. Suppose that the fluid described by
Equation (1) conforms to thermodynamics, then all motions of the fluid satisfy the Clausius–
Duhem inequality. Assume that the specific Helmholtz free energy of the fluid is minimized
when the fluid is locally stationary [48]; then,

μ � 0, α1 � 0, α1 + α2 = 0 (4)

The fractional derivatives are able to describe the nonlocality and memory
effects [17,21] of the generalized second-grade fluid. Since the fractional derivatives are
nonlocal, this allows fractional differential equations to describe physical processes with
long-range correlations or spatial-extent correlations. In general, the constitutive relation
for the fractional second-grade fluid [49,50] also assumes the form (1), yet A2 satisfies

A2 = RL
0 Dβ

t A1 + A1(∇V) + (∇V)TA1 (5)

in which RL
0 Dβ

t denotes the RLTFD operator [51].

The RLTFD operator RL
0 Dβ

t satisfies

RL
0 Dβ

t u(y, t) =
∂

∂t

(
1

Γ(1 − β)

∫ t

0

u(y, τ)dτ

(t − τ)β

)
, 0 < β < 1 (6)

where Γ(·) denotes the Gamma function. When β = 1, using the RLTFD’s property, one ob-

tains RL
0 Dβ

t f (t) = RL
0 D1

t

(
RL
0 D0

t f (t)
)
= d f (t)

dt , namely, Equation (5) simplifies to Equation (3).
When α1 = 0 and α2 = 0, the classical viscous Newtonian fluid is recovered [52,53]. It
should be indicated that we have kept the same notation for the constant α1 in (1) for the
sake of simplicity, but it refers to a new material constant with the dimensions kg ·m−1 · sβ−1.
It reduces to kg · m−1 for β → 1 . For the other relations between (1) and (3), they remain
formally unchanged under the above dimensional understanding [54].

Neglecting the external forces, the equation of motion satisfies

ρ
DV

Dt
= ∇ · T (7)

in which the fluid’s density is expressed as ρ, and the material derivative is represented
as D

Dt .
The continuity equation for velocity is expressed as

∇ · V = 0 (8)

Consider a modified second-grade fluid flowing close to a plate, moving with the
velocity uw(t) within its own plane suddenly. The x-axis is defined following the motion
adjacent to the wall, and the y-axis and the wall are perpendicular. Assuming the effects of
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the side walls can be disregarded and implying the wall is infinitely long, we aim to find
solutions in the form of the velocity field as

V = u(y, t)i (9)

in which the x-direction unit vector is represented as i, and the x-direction velocity is
expressed as u.

The stresses exerted on the plate initiate the movement of the fluid, which is given by
(1), (2), (4), and (5). Substituting (9) into (1)–(6), we obtain

Txy = μ
∂u

∂y
+ α1

RL
0 Dβ

t

∂u

∂y
(10)

where Txy = Tyx and Txx = Tyy = Tzz = Txz = Tyz = 0. Note that we have kept the
same notation for the constant α1 in (10), but it refers to a new material constant with the
dimensions kg · m−1 · sβ−1.

By introducing (9) and (10) into (7), it yields

ρ
∂u

∂t
= μ

∂2u

∂y2 + α1
RL
0 Dβ

t

∂2u

∂y2 (11)

The IBCs satisfy
u(y, 0) = 0, y > 0 (12)

u(0, t) = uw(t), u(+∞, t) = 0, t ∈ [0, T] (13)

where uw(t) is the velocity of the plate.
Dimensionless variables are introduced to facilitate the analysis

�
u =

u

U
,
�
y =

yUρ

μ
,
�

t =
tU2ρ

μ
,
�
u w(

�

t ) =
uw(t)

U
(14)

where U represents the characteristic velocity.
For generalization purposes, the form of f (y, t) is presented. Subsequently, the dimen-

sionless governing equation along with its IBCs are presented as follows (the superscript
“�” is omitted)

∂u(y, t)

∂t
=

∂2u(y, t)

∂y2 + ηRL
0 Dβ

t

∂2u(y, t)

∂y2 + f (y, t) (15)

u(y, 0) = 0, y > 0 (16)

u(0, t) = uw(t), u(+∞, t) = 0, t ∈ [0, T] (17)

where η = α1U2βρβ

μβ+1 .

3. The Establishment of the ABC

By using the ABM, we formulate the exact ABC. First, the unbounded region Ω :=
{y|0 ≤ y < +∞} is truncated by the point yr. In such a case, we divide the unbounded re-
gion as the unbounded area Ωr := {y|yr ≤ y < +∞} located to the right, and the bounded
area Ωc := {y|0 ≤ y ≤ yr } is designated for calculation. The selection of yr demands that
the initial conditions and the source term be compactly supported in region Ωc.

In the unbounded region Ωr, we have

∂u(y, t)

∂t
=

∂2u(y, t)

∂y2 + ηRL
0 Dβ

t

∂2u(y, t)

∂y2 + f (y, t) (18)

u(y, 0) = 0 for y > 0 (19)

u(+∞, t) = 0 when t ∈ [0, T] (20)
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Since β is between zero and one, the Laplace transform for RL
0 Dβ

t [55] has the form

L
{

RL
0 Dβ

t f (t), s
}

= sβL{ f (t), s} −
[

RL
0 Dβ−1

t f (t)
]

t=0
. By referring to the principle of the

Laplace transform for the RLTFD, we obtain

∂2û(y, s)

∂y2 − s

1 + ηsβ
û(y, s) = 0 (21)

in which the Laplace transform of u(y, t) is represented as û(y, s).
Solving the above equation yields

û(y, s) = e
−
√

s

1+ηsβ y
(22)

For Equation (22), we take the derivative for y

∂û(y, s)

∂y
= − 1

(
1 + ηsβ

) 1
2

û(y, s) (23)

Before performing the inverse Laplace transform, it is crucial to define the generalized
Mittag–Leffler function [55]:

E
γ
k,l(z) =

∞

∑
n=0

(γ)n

n!Γ(nk + l)
zn, Rek > 0, l ∈ C, γ > 0 (24)

where (γ)n = γ(γ + 1) · · · (γ + n − 1) = Γ(γ + n)/Γ(γ).
The Mittag–Leffler function [55] has the following property:

L
{

tl−1E
γ
k,l

(
−λtk

)
, s
}
=

skγ−l

(
λ + sk

)γ (25)

where Rek > 0 and Rel > 0.
By conducting the inverse Laplace transformation for (23), we infer the ABC at y = yr

∂u(yr, t)

∂y
= −

√
1
η

[
t

1
2 β−1E

1
2

β, 1
2 β

(
− 1

η
tβ

)]
∗ RL

0 D
1
2
t u(yr, t) (26)

where ∗ stands for the convolution.
To facilitate explanation, we introduce the notation as

K1(t) =

√
1
η

[
t

1
2 β−1E

1
2

β, 1
2 β

(
− 1

η
tβ

)]
(27)

After introducing the symbol K1(t), the Equation (26) changes:

∂u(yr, t)

∂y
=
∫ t

0
−K1(t − τ) ∗ RL

0 D
1
2
τ u(yr, τ)dτ (28)

Taking Equation (28) as the exact ABC, we formulate the governing equation based on
the IBCs:

∂u(y, t)

∂t
=

∂2u(y, t)

∂y2 + ηRL
0 Dβ

t

∂2u(y, t)

∂y2 + f (y, t) (29)

u(y, 0) = 0 (30)

u(0, t) = 0 (31)
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∂u(yr, t)

∂y
=
∫ t

0
−K1(t − τ) ∗ RL

0 D
1
2
τ u(yr, τ)dτ (32)

Now, we discuss the well-posedness of the considered problem. Since the initial

condition of our question is zero, RL
0 Dβ

t u(t) and C
0 D

β
t u(t) are equivalent. Then, the property

for the Caputo fractional derivative is also applicable to the RLTFD. Initially, we introduce
the following lemma.

Lemma 1. Assume u(t) to be an absolutely continuous function on [0, T]. Considering 0 <

β < 1 and u(0) = 0, it yields [56]

u(t)RL
0 Dβ

t u(t) ≥ 1
2

RL
0 Dβ

t u2(t) (33)

Theorem 1. The problem (29)–(32) is L2 -stable and adheres to the subsequent estimation:

∥∥∥∥
∂u(y, t)

∂y

∥∥∥∥
2

L2[0,yr ]

≤ ‖ f (y, t)‖2
L2[0,yr ]

(34)

where ‖u(y, t)‖2
L2[a,b](t) =

∫ b
a |u(y, t)|2dy.

Proof. In the outer region (yr,+∞], the source term becomes zero due to the compactly
supported assumption in [0, yr]. Multiplying both sides of Equation (29) simultaneously by
∂2u(y,t)

∂y2 and integrating over y from yr to +∞ and t from 0 to T, it yields:

∫ T
0

∫ +∞

yr

∂u(y, t)

∂t

∂2w(y, t)

∂y2 dydt =
∫ T

0

∫ +∞

yr

∂2u(y, t)

∂y2
∂2u(y, t)

∂y2 dydt

+η
∫ T

0

∫ +∞

yr

∂2u(y, t)

∂y2
RL
0 Dβ

t

∂2u(y, t)

∂y2 dydt.
(35)

Employing the method of integration by parts and Lemma 1 yields:

∫ T

0

∫ +∞

yr

∂u(y, t)

∂t

∂2u(y, t)

∂y2 dydt = −
∫ T

0

∂u(yr, t)

∂t

∂u(yr, t)

∂y
dt − 1

2

∫ T

0

∂

∂t

∥∥∥∥
∂u(y, t)

∂y

∥∥∥∥
2

L2(yr ,+∞]

dt (36)

Considering (30) and (31), we have:

−
∫ T

0
∂u(yr, t)

∂t

∂u(yr, t)

∂y
dt − 1

2

∫ T
0

∂

∂t

∥∥∥∥
∂u(y, t)

∂y

∥∥∥∥
2

L2(yr ,+∞]

dt

= −
∫ T

0
∂u(yr, t)

∂t

∂u(yr, t)

∂y
dt − 1

2

∥∥∥∥
∂u(y, T)

∂y

∥∥∥∥
2

L2(yr ,+∞]

≤ −
∫ T

0
∂u(yr, t)

∂t

∂u(yr, t)

∂y
dt.

(37)

The second term satisfies that:

∫ T

0

∫ +∞

yr

∂2u(y, t)

∂y2
∂2u(y, t)

∂y2 dydt ≥ 0 (38)
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By using Lemma 1, we obtain:

η
∫ T

0

∫ +∞

yr

∂2u(y, t)

∂y2
RL
0 Dβ

t

∂2u(y, t)

∂y2 dydt ≥ η

2

∫ T
0

RL
0 Dβ

t

∥∥∥∥
∂2u(y, t)

∂y2

∥∥∥∥
2

L2(yr ,+∞]

dt

=
η

2

∫ T
0

d
dt

(
1

Γ(1 − β)

∫ t
0

∥∥∥∥
∂2u(y, τ)

∂y2

∥∥∥∥
2

L2(yr ,+∞]

1

(t − τ)β
dτ

)
dt

=
η

2

(
1

Γ(1 − β)

∫ T
0

∥∥∥∥
∂2u(y, τ)

∂y2

∥∥∥∥
2

L2(yr ,+∞]

1

(T − τ)β
dτ

)
≥ 0.

(39)

Combining (35)–(39), we can deduce:

∫ T

0

∂u(yr, t)

∂t

∂u(yr, t)

∂y
dt ≤ 0 (40)

Consider the inner region [0, yr]. Both sides of Equation (29) are simultaneously

multiplied by ∂2u(y,t)
∂y2 and integrated over y in region [0, yr] and t in region [0, T]. Then, we

have
∫ T

0

∫ yr

0
∂u(y, t)

∂t

∂2u(y, t)

∂y2 dydt =
∫ T

0

∫ yr

0
∂2u(y, t)

∂y2
∂2u(y, t)

∂y2 dydt

+η
∫ T

0

∫ yr

0
RL
0 Dβ

t

∂2u(y, t)

∂y2
∂2u(y, t)

∂y2 dydt +
∫ T

0

∫ yr

0 f (y, t)
∂2u(y, t)

∂y2 dydt.
(41)

For the first term, considering the boundary condition, we can derive:

∫ T
0

∫ yr

0
∂w(y, t)

∂t

∂2w(y, t)

∂y2 dydt =
∫ T

0

∫ yr

0
∂w(y, t)

∂t
d

∂w(y, t)

∂y
dt

=
∫ T

0
∂w(yr, t)

∂t

∂w(yr, t)

∂y
dt −

∫ T
0

∫ yr

0
∂w(y, t)

∂y

∂

∂t

∂w(y, t)

∂y
dydt.

(42)

Considering the initial condition, it yields:

−
∫ T

0

∫ yr

0

∂w(y, t)

∂y

∂

∂t

∂w(y, t)

∂y
dydt ≤ −

∫ yr

0

(
∂w(y, T)

∂y

)2

dy +
∫ yr

0

[∫ T

0

∂w(y, t)

∂y

∂

∂t

∂w(y, t)

∂y
dt

]
dy (43)

then one can obtain

−
∫ T

0

∫ yr

0

∂w(y, t)

∂y

∂

∂t

∂w(y, t)

∂y
dydt ≤ −1

2

∫ yr

0

(
∂w(y, T)

∂y

)2

dy ≤ 0 (44)

Combining (40), (42) and (44), the first term changes:

∫ T

0

∫ yr

0

∂w(y, t)

∂t

∂2w(y, t)

∂y2 dydt ≤ 0 (45)

The second term satisfies that:

∫ T

0

∫ yr

0

∂2w(y, t)

∂y2
∂2w(y, t)

∂y2 dydt ≥ 0 (46)

Using Lemma 1, the third term satisfies

η
∫ T

0

∫ yr

0

∂2w(y, t)

∂y2
RL
0 Dβ

t

∂2w(y, t)

∂y2 dydt ≥ η

2

∫ T

0

∫ yr

0

RL
0 Dβ

t

(
∂2w(y, t)

∂y2

)2

dydt (47)

109



Fractal Fract. 2024, 8, 309

Considering the definition (6), we obtain

η

2

∫ T
0

∫ yr

0
RL
0 Dβ

t

(
∂2w(y, t)

∂y2

)2

dydt

=
η

2

∫ T
0

∫ yr

0
d
dt

(
1

Γ(1 − β)

∫ t
0

1

(t − τ1)
β

(
∂2w(y, τ1)

∂y2

)2

dτ1

)
dydt

=
η

2

∫ yr

0

(
1

Γ(1 − β)

∫ t
0

1

(T − τ1)
β

(
∂2w(y, τ1)

∂y2

)2

dτ1

)
dy ≥ 0.

(48)

According to the Cauchy–Schwartz inequality, one can estimate the fourth term as

−
∫ T

0

∫ yr

0
f (y, t)

∂2u(y, t)

∂y2 dydt ≤ 1
2

∫ T

0

∫ yr

0
( f (y, t))2dydt +

1
2

∫ T

0

∫ yr

0

(
∂2u(y, t)

∂y2

)2

dydt (49)

Then, Equation (41) changes:

∫ T

0

∫ yr

0

∂2u(y, t)

∂y2
∂2u(y, t)

∂y2 dydt ≤
∫ T

0

∫ yr

0
( f (y, t))2dydt (50)

Therefore, the proof is complete and Equation (34) has been proven. �

Theorem 2. Given that u(y, t) and v(y, t) are solutions to (29)–(32), it is concluded that
u(y, t) and v(y, t) are identical, ensuring the uniqueness of the solution.

Proof. Denote w(y, t) = u(y, t)− v(y, t). w(y, t) satisfies the following equation:

∂w(y, t)

∂t
=

∂2w(y, t)

∂y2 + ηRL
0 Dβ

t

∂2w(y, t)

∂y2 (51)

which is subjected to IBCs:
w(y, 0) = 0 (52)

w(0, t) = 0 (53)

∂w(yr, t)

∂y
=
∫ t

0
−K1(t − τ) ∗ RL

0 D
1
2
t w(yr, τ)dτ (54)

According to Theorem 1, it follows that

∫ t

0

∥∥∥∥
∂2w(·, τ)

∂y2

∥∥∥∥
2

dτ ≤ 0 (55)

where ‖w(·, t)‖2 is defined as ‖w(·, t)‖2 =
∫ yr

0 w2(y, t)dy.

Since
∥∥∥ ∂2w(·,τ)

∂y2

∥∥∥
2

is no less than zero, we obtain

∂2w(·, τ)

∂y2 = 0 (56)

According to (56), we assume that w(y, t) has the form

w(y, t) = C1(t)y + C2(t) (57)

Then, one can obtain
∂w(y, t)

∂y
= C1(t) (58)
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Considering the boundary condition (53), we have:

C2(t) = 0 (59)

Combining Equations (54)–(58), we can deduce:

C1(t) = −yr

∫ t

0
K1(t − τ) ∗ RL

0 D
1
2
τ C1(τ)dτ. (60)

Since the parameter yr is arbitrary, the following condition must hold for (60):

C1(t) = 0 (61)

which means w(y, t) = 0. The uniqueness of the solution has been established. The proof
of Theorem 2 has been finished. �

4. Construction of the FDM

This section is dedicated to formulating a numerical scheme based on Equation (29) to
Equation (32), with the aim of solving the problem on a bounded domain Ωc. In the domain
Ωc × [0, T], we define the temporal step size as τ = T/N and the spatial step size as h = yr

M ,
where the integers N and M correspond to the count of grid points in the temporal and
spatial dimensions, respectively. The grid points are defined as tn := nτ for 0 ≤ n ≤ N and
yj = jhy for 0 ≤ j ≤ M. Furthermore, u

(
yj, tn

)
and un

j represent the exact solutions and

numerical solutions of the velocity at grid points
(
yj, tn

)
for 0 ≤ n ≤ N and 0 ≤ j ≤ M,

respectively. For clarity, we introduce some notations below [28,29]

δtu
n
j =

un
j − un−1

j

τ
, δ2

yun
j =

un
j+1 − 2un

j + un
j−1

h2 (62)

At t = tn, the time-fractional derivative of order α in the RLTFD is approximated by
the L1 scheme [49] by considering the equivalent relationship between the RLTFD and the
Caputo fractional derivative:

RL
0 Dα

t un = C
0 D̃α

t un + R1 =
τ−α

Γ(2 − α)

[
a
(α)
0 un −

n−1

∑
k=1

(
a
(α)
n−k−1 − a

(α)
n−k

)
uk − a

(α)
n−1u0 +

1 − α

nα
u0

]
+ R1 (63)

where a
(α)
0 = 1 and a

(α)
k = (k + 1)1−α − k1−α, k = 1, 2, . . . , n − 1. The symbol R1 refers to

the error and satisfies |R1| ≤ Cτ2−α.

Apart from that, the central difference formula is utilized to approximate ∂2u
∂y2 , and

the error terms are disregarded. Subsequently, the discretized scheme of the equation is
obtained as follows:

δtu
n
j =

τ−β

Γ(2 − β)

[
a0

(β)δ2
yun

j −
n−1

∑
k=1

(
a
(β)
n−k−1 − a

(β)
n−k

)
δ2

yuk
j − a

(β)
n−1δ2

yu0
j +

1 − β

nβ
u0

j

]
+ δ2

yun
j (64)
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Furthermore, using the definitions given by Equation (62), the aforementioned equa-
tion can be rearranged as:

−
(

ητ−β

Γ(2 − β)
a0

(β) + 1
)un

j+1

h2 +

(
ητ−β

Γ(2 − β)
a0

(β) 2
h2 +

2
h2 +

1
τ

)
un

j −
(

ητ−β

Γ(2 − β)
a0

(β) + 1
)un

j−1

h2

= − ητ−β

Γ(2 − β)

[
n−1
∑

k=1

(
a
(β)
n−k−1 − a

(β)
n−k

)
δ2

yuk
j + a

(β)
n−1δ2

yu0
j −

1 − β

nβ
u0

j

]
+

un−1
j

τ
.

(65)

The integral term (32) under the ABC is approximated using the following form:

∫ tk
tk−1

K1(t − τ) ∗ RL
0 D1/2

t udτ

≈ τK1(tn − tk)
τ−1/2

Γ(3/2)

[
a
(1/2)
0 uk −

k−1
∑

j=1

(
a
(1/2)
k−j−1 − a

(1/2)
k−j

)
uj − a

(1/2)
k−1 u0 − 1

2n1/2
u0

j

]
.

(66)

By using the backward difference scheme with first-order spatial derivatives, we
derive the final difference scheme for the ABC:

un
j − un

j−1

h
= −

n

∑
k=1

K1((n − k)τ)
τ1/2

Γ(3/2)

[
a
(1/2)
0 uk −

k−1

∑
j=1

(
a
(1/2)
k−j−1 − a

(1/2)
k−j

)
uj − a

(1/2)
k−1 u0 +

1
2n1/2

u0
j

]
(67)

Subsequently, the remaining conditions can be discretized as follows:

u0
j = 0, j = 0, 1, 2, . . . , M, un

0 = uw(tn), n = 0, 1, 2, . . ..

Remark 1. Since the governing equation in this work constitutes a particular instance of the issue
in [57] with new boundary condition, the stability and convergence of the proposed numerical scheme
can be proved through a comparable approach. This paper primarily focuses on the formulation of the
ABC and an evaluation of its advantages. As such, a detailed theoretical analysis of the numerical
scheme has been excluded.

5. Numerical Examples

5.1. The Verification of the Solution and the ABC

The first step is to validate the numerical solution by contrasting it with the exact
solution. According to (29) to (32), the governing equation with a source term f (y, t) is
as follows:

∂u(y, t)

∂t
=

∂2u(y, t)

∂y2 + ηRL
0 Dβ

t

∂2u(y, t)

∂y2 + f (y, t) (68)

subsequently, the IBCs are presented by

u(y, 0) = 0 for y > 0 (69)

u(0, t) = Wt2and
∂u(yr, t)

∂y
+
∫ t

0
K1(t − τ) ∗ RL

0 D1/2
τ u(yr, τ)dτ = 0, for t > 0 (70)

where yr is selected to be yr = 1.
We define the exact solution as

u(y, t) =

{
W(1 − y)6(1 + y)6t6, for 0 ≤ y ≤ 1,

0, elsewhere.
(71)
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Bringing the above exact solution (71) into Equation (68) yields the expression for the
source term:

f (y, t) =

⎧
⎪⎪⎨
⎪⎪⎩

6Wt5(1 − y)6(y + 1)6 − Wt6(30(y + 1)6(y − 1)4

+72(y + 1)5(y − 1)5 + 30(y + 1)4(y − 1)6)
[

Γ(7)t−β

Γ(7−β)
+ 1

]
, for 0 ≤ y ≤ 1,

0, elsewhere.

It should be indicated that the source term complies with the condition of the ABC
that it is compactly supported in the inner region [0, 1].

In conjunction with the matrix form of the difference scheme, which can be deduced
by (65), we use MATLAB to solve the governing equation. This aims at generating the
numerical solutions on successive time levels. The computational domain is specified as
[0, 1], with a termination time denoted by T = 1. The calculation parameters are set to
β = 0.5 and η = 1, while the temporal and spatial steps are τ = 1/210 and h = 1/210,
respectively. As apparently revealed in Figure 2, the comparative velocity profiles of the
numerical and analytical solutions at t = 1 exhibit similar distribution patterns, which is
sufficient to prove that the numerical scheme we developed is precise.

Figure 2. The comparison curve of error distribution for T = 1 between the numerical solution and
the exact solution when β = 0.5, η = 1 and W = 1.

Figure 3 provides a clear visualization of the disparities in velocity distribution when
comparing the ABC against the DTBC, facilitated by the choice of f (y, t) = 0. Notably, the
distribution curves exhibit significant divergence at the right boundary. This difference
stems from the fact that the DTBC specifies zero velocity at the selected right boundary,
whereas the velocity at the right boundary follows a specific functional relationship when
subject to the ABC, which is determined through meticulous derivation. In numerous
practical situations, the velocity at the boundary on the right does not maintain a constant
zero over time, which potentially results in imprecise numerical solutions based on the
DTBC. However, the ABC averts the artificial error at the truncation point and is consistent
with the zero boundary condition at infinite locations. This proves that the ABC can
effectively deal with problems related to extension to infinite domains.
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Figure 3. The velocity distribution between the ABC (left) and the DTBC (right) when f (y, t) = 0,
T = 5, β = 0.5, η = 1, and W = 1.

5.2. Impact of Parameter Variations on the Velocity Field Induced by a Moving Plate

We assume that the fluid is set in motion by a plate moving at the velocity uw(t) = Wt2.
With this assumption, the governing equation with its associated IBCs reduces to:

∂u(y, t)

∂t
=

∂2u(y, t)

∂y2 + ηRL
0 Dβ

t

∂2u(y, t)

∂y2 (72)

u(y, 0) = 0 for y > 0 (73)

u(0, t) = Wt2 and
∂u(yr, t)

∂y
+
∫ t

0
K1(t − τ) ∗ RL

0 D1/2
τ u(yr, τ)dτ = 0 (74)

The examination of parameter influence on the velocity field is conducted. In this
example, we select the cut-off point as yr = 8. Figure 4 illustrates the impact of the varying
time parameter on the velocity distribution. Comparing multiple curves at different time
points, it can be found that the fluid velocity at the same location increases with time.
Analyzing a single curve, it can be observed that the closer the fluid is to the plate, the
greater the velocity will be. The figure describes the time evolution of the velocity well.

Figure 4. The impacts exerted by the time parameters on the velocity distribution for β = 0.5, η = 1,
and W = 1.

As shown in Figure 5 for y (left) and t (right), the variation in fractional orders
significantly influences the velocity distribution. This plate’s motion changes the shear
force, causing the fluid near the plate to begin to flow. Therefore, it can be observed that
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in the actual image, the velocity at the starting point is very high, whereas the velocity
at locations further away is relatively low. A trend is observable in these images, where
the flow velocity diminishes with an increase in y. And at a fixed position, the velocity
rises with the augmentation of t. As shown in the figure on the left of Figure 5, at a fixed
time, the increase in the fractional parameter results in a smaller value of the distribution
curve. From this, it can be observed that as the fractional parameter diminishes, the fluid’s
memory properties become more pronounced, and the velocity transmission occurs more
rapidly. Regarding the relationship between the distribution curve and time, when the
spatial position is fixed, the larger fractional parameter results in the decreasing velocity of
the fluid.

Figure 5. The impacts exerted of the fractional parameters on the velocity distribution versus y (t = 1)
and t (y = 1) for η = 1 and W = 1.

In Figure 6, the effect of relaxation parameters on the velocity distribution is shown.
The relaxation time parameter exerts a delayed impact on the fluid’s flow. As illustrated on
the left side of Figure 6, at a fixed time, an increase in the relaxation parameter results in a
higher value of the distribution curve. From this observation, a conclusion can be drawn
that there is a correlation between the larger relaxation parameter and the delay effect. For
the relationship between the distribution curve and time, when the space y is fixed, the
velocity increases as the relaxation parameter becomes larger.

Figure 6. The impacts of the relaxation parameters on the velocity distribution versus y (t = 1) and t

(y = 1) for β = 0.5 and W = 1.

Figure 7 demonstrates the distribution versus β with the influence of various relaxation
time parameters, highlighting the relaxation time parameter’s delayed influence on fluid
flow. As depicted in Figure 7, for a constant fractional parameter β, an increase in the
relaxation parameter leads to a higher value of the distribution curve. Concurrently,
with the fractional parameter increasing, the fluid velocity diminishes progressively. It

115



Fractal Fract. 2024, 8, 309

is inferred that a larger relaxation parameter results in a diminished delay effect and an
increased velocity.

Figure 7. The impacts of the relaxation parameters on the velocity distribution versus β for W = 1.

5.3. Various Velocities Induced by Vibrating Plates with Different Physical Parameters

In this example, the emphasis is placed on the impact of dynamic parameters on the
flow mechanism of fluid, propelled by a plate with oscillating velocity. The governing
equation for the IBCs is presented below

∂u(y, t)

∂t
=

∂2u(y, t)

∂y2 + ηRL
0 D

β
t

∂2u(y, t)

∂y2 (75)

u(y, 0) = 0 for y > 0 (76)

u(0, t) = U sin
(

ωt2
)

and
∂u(yr, t)

∂y
+
∫ t

0
K1(t − τ) ∗ RL

0 D1/2
τ u(yr, τ)dτ = 0 (77)

Figure 8 shows the velocity distribution of y and t. Contrary to previous numerical
instances, the observations from the figure reveal that the oscillating distribution results
directly from a moving plate exhibiting oscillatory velocity. The effects of frequency ω
and amplitude U on the velocity distribution on y and t are shown in Figures 9 and 10. It
should be noted that we took the space calculation region as [0, 5], and the termination time
of the analysis was T = 5.

Figure 8. The velocity distributions with y and t for β = 0.5, η = 1, ω = 1, and U = 1.
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Figure 9. The velocity distributions with different frequency ω versus y (t = 5) and t (y = 1) for
β = 0.5, U = 1, and η = 1.

Figure 10. The velocity distributions with different amplitudes U versus y (t = 5) and t (y = 1) for
β = 0.5, ω = 1, and η = 1.

Figure 9 illustrates the impact of the oscillation frequency ω on the velocity distribution.
In the left figure, at a fixed time, the fluid near the moving plate has a larger negative
velocity in the initial position. The fluid’s velocity increases with the moving plate’s
vibration frequency ω. Due to the vibration of the moving plate, the peak value of the
velocity distribution curve occurs within a certain distance from the plate when ω = 1 and
ω = 2, while the curve does not oscillate when ω = 3. With the increase in y, the influence
of oscillations on the fluid weakens and the fluid velocity decreases in the negative direction.
By comparing the velocity distribution curves at different frequencies, it can be observed
that the velocity distribution curve of the fluid changes more rapidly as the frequency ω
of the moving plate increases. Finally, when the distance from the plate is far enough, the
vibration of the plate has no effect on the fluid. The velocity distribution curve of the fluid
becomes smoother, and the velocity distribution curves of different vibration frequencies
tend to be close. In the figure on the right, the time change of the fluid near the plate,
which is affected by the moving plate, is described. For the same vibration frequency ω, the
amplitude of the velocity distribution curve and the vibration period gradually decrease
with the passage of time, because the moving plate whose velocity oscillates in the form of
a sinusoidal function causes the fluctuation of the velocity distribution. The peak value of
the velocity distribution curve is earlier for a larger vibration frequency ω. The results show
that, as the frequency ω increases, both the period and the amplitude of the distribution
curve decrease.

Figure 10 depicts the impact of the amplitude on the velocity distribution. Similar to
Figure 9, the negative velocity of the fluid close to the moving plate first increases to the
peak and then decreases. At a fixed position, the oscillation period and amplitude of the
fluid decrease gradually with the passage of time. By comparing the velocity distribution
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curves of different amplitudes, the larger the amplitude U is, the greater the peak value
of the velocity distribution curve at a fixed time is, and the faster the curve changes. In a
fixed position, the velocity distribution curve’s amplitude is directly proportional to the
amplitude U.

5.4. Comparison of This Study with Other Methods in Ref. [58]

To further verify the accuracy of the numerical solutions presented in this paper, other
studies on generalized second-order fluid flow on a semi-infinite plate are selected for
comparison. Shahed [58] studied the impulsive flow of a fractional second-grade fluid on a
flat plate. The IBCs were u(y, 0) = 0, y > 0, u(0, t) = 1, u(+∞, t) = 0, and t ∈ [0, T].

Since the initial condition is zero, the equation containing the Caputo fractional
derivative in reference [58] is equivalent to the equation with RLTFD in this paper. The
ABC (32) is applied. By selecting the same parameters and comparing them with Figure 2
in [58], the comparison curve with the numerical solution in our study is given in Figure 11.
The red dotted line is the curve derived from the method of this study, and the black solid
line is the curve given by Shahed [58]. The comparison shows that the curves derived from
the two methods match very well, which indicates the accuracy of our numerical method.

 

Figure 11. Comparison between the numerical solution in our study and other methods in Ref. [58]
by selecting parameters η = 1, t = 2, and β = 0.5.

6. Conclusions

In this study, the fractional governing equation that describes generalized second-
grade fluid’s flow over semi-infinite plates, induced by varying plate velocities, was rigor-
ously derived. For semi-bounded domains, the study employed the ABM. This resulted
in the formulation of ABC as convolutions within a finite region. The use of the artificial
boundary method made the numerical simulation of this fractional governing equation
highly applicable. Subsequently, the governing equation was numerically discretized by
incorporating the initial condition and the ABC by utilizing the L1 scheme. The paper
then presented four numerical examples: the first one validated the difference scheme’s
effectiveness through introducing the source term and demonstrated the superiority of
the ABC compared to the DTBC, and the second one examined how dynamic parameters
within the governing equation affect velocity distribution. In the third example, a numerical
example was given to analyze the flow mechanism arising from an oscillating plate, and
the effects of the frequency and amplitude on velocity were described, respectively. Finally,
the comparison of the numerical example with the ABC and the results in Ref. [58] was
discussed. Some of the major findings are summarized below.

(i) A higher fractional parameter leads to a slower rate of fluid flow;
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(ii) The delay effect increases with the decrease in relaxation parameters, and the fluid
velocity rises as the relaxation parameter increases;

(iii) The higher the oscillation frequency is, the faster the velocity will change, and the
velocity distribution curve will exhibit a decreased period and amplitude;

(iv) With a greater amplitude, the fluid velocity changes more rapidly and the amplitude
of the velocity distribution curve also increases.

The important conclusions drawn from this study not only advance the theory of
non-Newtonian fluid dynamics, but also extend to its engineering applications in a broad
spectrum of fields, including chemical, petroleum, aerospace, and biomedical engineering.
In addition, this research contributes to the design and optimization of new materials in
materials science, the prediction of pollutant dispersion in environmental science, and the
diagnosis and treatment of cardiovascular diseases in the medical field. It also promotes
the advancement of numerical simulation technology to solve the problem of infinite
boundaries using artificial boundary techniques and provides a theoretical basis and
computational methods for the simulation of complex fluid systems. We intend to explore
more comprehensive non-Newtonian fluid models with ABC is our future work.
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Abstract: In this study, we investigate the application of fractional calculus to the mathematical

modeling of biological systems, focusing on fractional-order-in-time partial differential equations

(FTPDEs). Fractional derivatives, especially those defined in the Caputo sense, provide a useful

tool for modeling memory and hereditary characteristics, which are problems that are frequently

faced with integer-order models. We use the Chebyshev spectral approach for spatial derivatives,

which is known for its faster convergence rate, in conjunction with the L1 scheme for time-fractional

derivatives because of its high accuracy and robustness in handling nonlocal effects. A detailed

theoretical analysis, followed by a number of numerical experiments, is performed to confirmed

the theoretical justification. Our simulation results show that our numerical technique significantly

improves the convergence rates, effectively tackles computing difficulties, and provides a realistic

simulation of biological population dynamics.

Keywords: fractional-order-in-time biological population model; Chebyshev spectral method; error

analysis; numerical examples

1. Introduction

Fractional calculus is an extension of conventional calculus that explores the possibility
of taking real-numbered powers of the differentiation and integration operators. Unlike
classical calculus, which only works with integer orders, fractional calculus accepts integrals
and derivatives of any fractional order, positive or negative. The fractional integral of order
α is a generalization of the n-fold integral applied n times, where α can be any real number.
It is typically defined using a convolution with a power function, leading to an integral
operator known as the Riemann–Liouville integral. Fractional calculus has a wide range of
applications in disciplines including biology, engineering, physics, economics, and more. It
is employed in physics to simulate systems that have memory and inherited characteristics,
such as viscoelastic materials or processes in which the system’s future state is dependent
on both its past behavior and its current state. Fractional calculus is helpful to engineers in
control theory, especially for designing controllers that provide reliable performance under
a variety of circumstances [1–3]. Fractional derivatives are incorporated into standard
partial differential equations in order to generate fractional partial differential equations
(FPDEs), which enable the modeling of memory and hereditary features in a variety of
materials and systems. Time-fractional differential equations, in which the order of the time
derivative is a fraction instead of an integer, are the subject of this research. When modeling
systems where the rate of change is not constant but rather depends on the process’s
whole history, these equations are especially helpful. Most recently, the application of
fractional-order equation-based vegetation–water in an arid flat environment has been
studied in [4].

The most common form of a time-fractional partial differential equation involves the
Caputo or Riemann–Liouville definition of fractional derivatives. Time-fractional PDEs
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are extensively used to model physical phenomena exhibiting anomalous diffusion, which
is diffusion where the flux at any point in space depends on the historical states of the
system, rather than being directly proportional to the gradient of concentration as in
classical diffusion. These models have been used to simulate subdiffusion or superdiffusion
processes in complex systems where particle trajectories diverge from those of traditional
Brownian motion in domains like physics. When molecular movement is impeded by
barriers or binding effects that lead to anomalous diffusion, biology uses it to describe
the transport dynamics within cells. In finance, on the other hand, it is employed to
capture memory and hereditary effects in financial markets, enhancing asset price and risk
management modeling [5–8].

The goal of the latest developments in fractional calculus has been to enhance the
numerical techniques for solving fractional differential equations, which are crucial for
real-world applications across a range of industries. Several novel techniques have been
presented by researchers in an effort to more effectively handle the nonlocal characteristics
included in fractional derivatives. Adaptive methods are among them; they improve
accuracy and save computing costs by modifying the time steps based on the behavior of the
answer. The ability to numerically solve differential equations with fractional derivatives,
which are more difficult by nature because of their nonlocal nature, has been made possible
by advances in computational mathematics. Modern numerical techniques and algorithms
are still developing, which makes fractional calculus more useful in both industry and
scientific study [9–14]. As fractional calculus advances, it will offer a more comprehensive
mathematical framework that goes beyond the constraints of traditional differential and
integral calculus, providing up new possibilities for modeling and understanding the
natural world.

Biological population models are crucial and have contributed significantly to our
understanding of ecology, public health, and the behavior of the environment. Because they
aid in forecasting and controlling species interactions, population growth, and the impact of
changing environmental circumstances on ecosystems, these models are crucial to ecology.
They serve as crucial tools in conservation biology as well, helping scientists identify a
species’ vulnerability and develop effective conservation strategies. In order to evaluate
programs, predict the beginning of epidemics, and comprehend how infectious diseases
propagate, biological population models are essential to public health research [15,16].
A more comprehensive study on the role of fractional calculus in modeling a biological
phenomena can be found in [17]. Fractional derivatives are used in biology to simulate
anomalous diffusion, which deviates from the standard equations of diffusion in cells
and tissues due to its ability to capture memory and hereditary properties inherent in
such systems as compared to the integer-order differential equation. Due to the fact that
these mathematical models, which consist of fractional-order derivatives, have a nonlocal
nature, involve complicated boundary conditions and memory effects, and therefore lack
closed-form solutions, the analytical solution of fractional differential equations is more
complicated, and sometimes it is even not possible to find it. These models are especially
helpful in ecosystems where organisms have lengthy lifespans or where environmental
changes occur slowly, which reduces the efficacy of standard models.

A sophisticated method of applying fractional calculus to study biological population
dynamics is introduced by the idea of a two-dimensional fractional-order-in-time biological
population model. By utilizing fractional derivatives, which are expansions of ordinary
derivatives, this mathematical framework expands upon the traditional population models
by including memory and hereditary features. This model takes into account both the
history and present population sizes when determining each population’s growth rate. This
is accomplished through the use of fractional differential equations, in which the degree
to which the past influences the dynamics of the present is indicated by the derivative’s
order, typically between 0 and 1. These models are better able to capture the intricacies
of biological processes that, as is common in many ecological systems, display long-term
memory or power-law waiting times. Predators and prey are two examples of interacting
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animals that could be included in a two-dimensional model. Fractional derivatives are
useful in modeling scenarios in which the dynamics of both populations in the future
are influenced throughout time by the residual effects of past interactions (e.g., resource
competition or predation rates). When contrasted to traditional models, this may result
in oscillations and stability conditions that are more realistic. In general, biologists and
ecologists can benefit greatly from the use of two-dimensional fractional-order models
in biological populations since they offer a greater understanding of the dynamics of
intricate ecosystems where past conditions have a substantial influence on future states.
Analytically solving population models is often infeasible for complex boundary and initial
conditions; thus, numerical solutions such as finite difference methods, finite element
methods, and spectral methods are employed. These methods involve discretizing the time
and space variables and approximating the fractional derivatives using techniques adapted
for their nonlocal nature. The integration of fractional calculus into partial differential
equations offers a powerful tool for exploring and describing dynamic systems with
memory and hereditary characteristics, which are not adequately modeled by classical
PDEs for these models. The development of robust numerical methods continues to be a
vital area of research, enabling the practical application of FPDEs across various scientific
disciplines [18,19].

Fractional-order diffusion equations, which are generalizations of classical diffusion
equations and address super-diffusive flow processes, are among the most basic instances
of the former. A large portion of published work on FPDEs has been focused on fractional
diffusion equations. In [20], Agrawal uses a finite sine transform method to find the
general solution of fractional-order diffusion equations. A theoretical framework using
the least-squares finite element technique has been investigated in [21], while a spectral
collocation scheme for two-dimensional nonlinear fractional diffusion equations and a
radial basis function approximation method is used in [22,23], respectively. A mathematical
model based on nonlinear fractional-order equations for the description of the behavior
of viscoplastic materials was developed in [24], while a fractional advection–dispersion
equation has been numerically investigated in [25,26]. In order to find the scale-invariant
solution of the TFDE in terms of the Wright function, Gorenflo et al. employed the similarity
approach and the Laplace transform method [27,28]. Numerous authors have examined
these models in analytical and numerical frameworks. A few of these researchers have
attempted to find analytical solutions for differential equations using temporal fractions.
For instance, time-fractional diffusion-wave equations were taken into consideration by
Schneider and Wyss and Wyss [29,30]. The temporal fractional PDE using finite difference in
fractional time and a higher numerical scheme was investigated in detail in [31]. Capturing
memory and hereditary properties is crucial in biological systems due to their inherent
dependence on past states. Fractional differential equations are particularly adept at
modeling these characteristics because they incorporate nonlocal properties, meaning the
rate of change at any point in time depends on all previous states. However, these equations
are complex and often lack closed-form solutions, making analytical solutions challenging
and necessitating robust numerical methods. The complexity of fractional derivatives,
especially their nonlocal nature, poses significant computational challenges that need to be
addressed with efficient numerical techniques.

In this work, we consider solving numerically a fractional-order-in-time biological
population model in two dimensions. We use the L1 scheme for fractional-order-in-time
derivatives. This scheme is very useful in handling the nonlocal properties of fractional-
order-in-time derivatives. For spatial derivatives, we use an efficient numerical scheme
based on the Chebyshev spectral method. Spectral methods are a class of techniques
used in numerical analysis to solve differential equations whose solutions are essentially
represented by the sum of globally defined basis functions. These functions are typically
orthogonal or trigonometric polynomials, depending on the boundary conditions and
nature of the problem. When the solution has smooth properties, spectral methods are well
known for their high accuracy and exponential rates of convergence, which greatly exceed
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the performance provided by conventional finite difference or finite element methods. The
most notable method among these is the Chebyshev spectral method due to its particular
effectiveness in handling problems with complex geometries or boundary conditions.
This method utilizes Chebyshev polynomials, which are a set of orthogonal polynomials
defined on the interval [−1, 1]. The main advantage of Chebyshev polynomials is their near-
minimal property for polynomial approximation. This property significantly minimizes
the maximum error between the numerical solution and the true solution. The efficiency
of this approach is further increased by the employment of Chebyshev nodes, or the
roots of these polynomials, which assist prevent the Runge phenomenon and guarantee
stability and dependability in numerical approximations [32–40]. Several studies have
applied fractional calculus to model biological systems. For instance, fractional derivatives
have been used to simulate anomalous diffusion in cells and tissues, capturing more
realistic dynamics than traditional models. Hattaf and Yousfi explored the global stability
of fractional diffusion equations in biological systems, highlighting the advantages of
fractional models in capturing complex biological behaviors [41]. However, many of these
studies focus on one-dimensional models or rely on analytical solutions, which are not
feasible for complex systems. This paper addresses this gap by developing a numerical
scheme for a two-dimensional fractional-order-in-time biological population model [42,43].

The rest of the paper is organized as follows: In Section 2, we present some preliminar-
ies and some basic definitions, which play a key role in the analysis of the scheme, followed
by the mathematical description of the model and the discretization scheme. Section 4
consists of a detailed error analysis, followed by numerical examples in Section 5. Section 6
consists of concluding remarks.

2. Preliminaries and Some Basic Definitions

In this section, we present some basic definitions related to fractional calculus theory
and orthogonal polynomials that are useful in the error analysis of our proposed numerical
scheme [44–47].

Definition 1. A real function g(τ), τ > 0 is defined to belong to the space Cν, ν ∈ R, if there
exists a real number q > ν, such that g(τ) = τqg1(τ), where g1(τ) ∈ C(0, ∞), and g is in the
space Cnν if and only if g(n) ∈ Cν, n ∈ N.

Definition 2. The Riemann–Liouville fractional integral operator Iβ (β ≥ 0) of a function g ∈ Cν,
ν ≥ −1 is given by

Iβg(τ) =
1

Γ(β)

∫ τ

0
(τ − s)β−1g(s) ds, (β ≥ 0) (1)

where Γ(·) is the gamma function. The properties of the operator Iβ include

Iβ Iγg(τ) = Iβ+γg(τ), (β ≥ 0, γ ≥ 0) (2)

Iβτδ =
Γ(1 + δ)

Γ(1 + δ + β)
τβ+δ, (δ ≥ −1) (3)

Definition 3. The Caputo fractional derivative Cα of a function g(τ) is defined as

CDα
τ g(τ) =

1
Γ(n − α)

∫ τ

0
g(n)(s)

ds

(τ − s)α+1−n
, (n − 1 < Re(α) ≤ n, n ∈ N) (4)

The properties of the Caputo fractional derivative include

CDα
ττβ =

Γ(1 + β)

Γ(1 + β − α)
τβ−α, (5)
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(IαCDα)g(τ) = g(τ)−
n−1

∑
k=0

g(k)(0+)

k!
τk, (6)

The Caputo fractional derivative is chosen for its ability to incorporate conventional initial and
boundary conditions in problem formulations.

Definition 4. The Mittag–Leffler function Eα,β(z) for complex numbers z and parameters α and β
is defined by the series

Eα,β(z) =
∞

∑
k=0

zk

Γ(αk + β)
, (7)

where α > 0 and β are real numbers, and Γ(·) denotes the Gamma function. This function
generalizes the exponential function, which is recovered as a special case when α = 1 and β = 1.

Eα,β(z) represents a two-parameter family of functions, where α and β allow for
various forms of convergence and divergence characteristics depending on their values.
When α = 1 and β = 1, the Mittag–Leffler function simplifies to the exponential function
ez, that is E1,1(z) = ez.

Definition 5. Chebyshev polynomials, represented as Cn(x), are established over the domain
[−1, 1] and can be formulated by the expression

Cn(x) = cos(n arccos(x)), n = 0, 1, 2, . . . (8)

Definition 6. The collection of Chebyshev polynomials {Cn(x)} set within the interval [−1, 1]
adhere to this orthogonality condition with respect to the weighted scalar product

〈Ci, Cj〉ω :=
∫ 1

−1
Ci(x)Cj(x)ω(x) dx =

⎧
⎪⎨
⎪⎩

0, if i �= j,

π, if i = j = 0,
π
2 , if i = j �= 0.

(9)

where the weighting function ω(x) is defined by

ω(x) =
1√

1 − x2
. (10)

Definition 7. Let δn denote the scaling coefficients for orthogonality:

δn =

{
2, if n = 0,

1, if n > 0.
(11)

Considering practical approaches in mathematical representations, when examining
polynomials of a degree at most N, the matrix representation of the weighted scalar product
can be succinctly illustrated as

H = diag{hii}, hii :=
σ

2
δn (12)

Here, the matrix H is diagonal with size (N + 1)× (N + 1), and each diagonal element
hii is influenced by the coefficient δn from the previous equation.

Definition 8. A smooth, continuous function σ(θ), defined on [−1, 1], can be approximated using
Chebyshev polynomials Cn(θ) as follows:

σ(θ) ≈
N

∑
n=0

σ̃nCn(θ), (13)
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where N represents the truncation level in the spectral method, and σ̃n is the Chebyshev expansion
coefficient for σ. This coefficient is calculated by

σ̃n =
1
δn

∫ 1

−1
σ(θ)Cn(θ)ω(θ) dθ, δn =

∫ 1

−1
C2

n(θ)
√

1 − θ2 dθ =

{
π, if n = 0,
π
2 , if n > 0.

(14)

Definition 9. In the computational process known as the Chebyshev forward transformation, the
Gauss–Lobatto integration method is typically employed for computing the weighted integral:

σ̃n ≈ 1
δn

N

∑
i=0

σ(θi)Cn(θi)wi (15)

where N represents the number of integration nodes, matching the truncation level. These nodes
and weights are specified as

θ0 = 1, θN = −1, θi = cos
(

πi

N

)
, w0 = wN =

π

2N
, wi =

π

N
(16)

Definition 10. For any continuous and smooth function σ(θ) defined over the interval [−1, 1], if
the derivative σ′(θ) maintains smoothness, it can be expanded using Cn(θ) as

σ′(θ) ≈
N

∑
n=0

σ̃′
nCn(θ), (17)

It is established that the expansion coefficient σ̃′
n for the derivative σ′(θ) and the coefficient σ̃n

for the original function satisfy the relation

σ̃′
n ≈ 2

δn

N

∑
q=n+1, q+n odd

qσ̃q, n ≥ 0 (18)

This relation can then be reformulated in matrix terminology:

σ̃′ = Dσ̃, (19)

where σ̃′ and σ̃ are arrays with dimensions 1 × (N + 1), defined as σ̃′ = [σ̃′
0, σ̃′

1, . . . , σ̃′
N ] and

σ̃ = [σ̃0, σ̃1, . . . , σ̃N ]. The matrix D is an upper triangular square matrix, sized (N + 1)× (N + 1).

Definition 11. The natural Sobolev norms, appropriate for gauging approximation errors within
the Chebyshev framework, integrate the Chebyshev weight into the quadratic means of the error and
its derivatives over the span (−1, 1). Thus, we establish the weighted Sobolev norm as

‖g‖Hw
m(−1,1) =

(
m

∑
n=0

‖g(n)‖2
L2

w(−1,1)

)1/2

. (20)

The associated Hilbert space is denoted Hw
m(−1, 1), where:

• ‖g(n)‖L2
w(−1,1) signifies the L2-norm of the n-th derivative of g, weighted over the interval

(−1, 1).
• Hw

m(−1, 1) is the weighted Sobolev space capturing the behavior of functions and their deriva-
tives up to order m under the weighted norm.

3. Fractional-Order-in-Time Dispersal in Population Dynamics

According to biologists, migration or dispersal has a significant impact on the regu-
lation of species populations. The diffusion of a biological species in a given region C is
described by three functions of position x = (η, ξ) and time t: the population supply s(x, t),
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the diffusion velocity u(x, t), and the population density ρ(x, t). The population density
ρ(x, t) quantifies the number of individuals per unit volume at position x and at time t. By
integrating ρ over any subregion D of C, the total population in D at time t is obtained. The
term s(x, t) indicates the rate at which individuals are added or removed per unit volume
at position x due to births and deaths. The diffusion velocity u(x, t) represents the mean
velocity of individuals at position x at time t, facilitating the description of population
movement from one location to another.

The following equation governs the dynamics:

∂α

∂tα

∫

D
ρ dV +

∫

∂D
ρu · n dA =

∫

D
s dV, (21)

where n is the outward unit normal on the boundary ∂D. The Caputo fractional derivative
is used to interpret the derivative. This basic equation means that the rate at which new
individuals are delivered directly to D must equal the rate at which the population within
D changes plus the rate at which people leave D over its boundary. With s = s(ρ) and
u = λ(ρ)∇ρ as assumptions, one can derive the following two-dimensional nonlinear
degenerate parabolic partial differential equation for ρ, where λ(ρ) > 0 for ρ > 0 and ∇ is
the gradient operator:

∂αρ

∂tα
= ∆(s(ρ)) + s(ρ), t > 0, (η, ξ) ∈ R

2, (22)

where the order of the fractional derivative with respect to time t is denoted by α. The
temporal fractional-order biological population model (TFBPM) is the name given to this
equation. The analysis presents φ(ρ) = ρ2 as a specific instance for modeling animal
populations, as explored by Gurney and Nisbet [48]. The migrations usually happen as a
result of individuals traveling down the population density gradient, which moves more
quickly at higher densities, in search of less congested areas to breed in a model that took
into account an animal walking through a rectangular grid was created to mimic this
behavior. With each step, the animal might either remain in the same spot or migrate
toward the area with the lowest density. The size of the population density gradient at the
relevant grid boundary determines the probability distribution for these movements. This
model leads to

∂αρ

∂tα
= ∆(ρ2) + s(ρ), t > 0, (η, ξ) ∈ R

2, (23)

with the initial condition ρ(η, ξ, 0) provided. When α = 1, this equation simplifies to the
normal biological population model (NBPM):

∂αρ

∂tα
= ∆(ρ2) + s(ρ), t > 0, (η, ξ) ∈ R

2. (24)

Additionally, various properties such as Hölder estimates and solutions of this model
have been explored.

Constitutive equations for s(ρ) may include the following:

• Malthusian Law: s(ρ) = cρ, where c is a constant.
• Verhulst Law: s(ρ) = c1ρ − c2ρ2, where c1, c2 are positive constants.
• Porous Media: s(ρ) = cρq, where c > 0 and 0 < q < 1.

For a generalized form, consider

∂αρ

∂tα
=

∂2ρ2

∂η2 +
∂2ρ2

∂ξ2 + hρa(1 − ℓρb), t > 0, (η, ξ) ∈ R
2, (25)

subject to some appropriate initial conditions and where h, a, ℓ, b are real numbers. Under
some specific parameter conditions, both the Verhulst and the Malthusian laws are covered
by Equation (25).
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Discretization Methodology

We consider the time-fractional partial differential equation given by Equation (25):

The L1 scheme is used to discretize the fractional time derivative ∂αρ
∂tα . This scheme is

particularly suitable for fractional derivatives due to its capability to handle the memory
effect inherent in such derivatives. The L1 approximation at a time tn is defined as: The L1
scheme approximates the fractional time derivative as follows:

∂αρn+1

∂tα
=

(δt)−α

Γ(2 − α)

n

∑
k=0

(ρn+1−k − ρn−k)
(
(k + 1)1−α − k1−α

)
+ O(δt2−α), (26)

where δt is the time step, and α is the fractional order of the derivative.
The correction term Bn, defined as

Bn =
(δt)−α

Γ(2 − α)

n

∑
k=1

(
(k + 1)1−α − k1−α

)
(ρn+1−k − ρn−k), (27)

becomes zero when n = 0. Therefore, the discretization formula simplifies as

∂αρn+1

∂tα
=

{
(δt)−α

Γ(2−α)
(ρn+1 − ρn) + Bn + O(δt2−α), α ∈ (0, 1),

ρn+1−ρn
δt + O(δt), α = 1.

(28)

The Chebyshev spectral method involves representing the solution ρ as a series expan-
sion in terms of Chebyshev polynomials. These polynomials are particularly effective for
approximating functions on bounded intervals due to their excellent approximation prop-
erties and the clustering of nodes at the endpoints, which can help in resolving boundary
layer effects. The approximation of ρ at a fixed time tn is given by

ρ(η, ξ, tn) ≈
N

∑
i=0

N

∑
j=0

cn
ijTi(η)Tj(ξ), (29)

where Ti are Chebyshev polynomials and cn
ij are the spectral coefficients.

The derivatives in the spatial domain are computed using the derivative properties of
Chebyshev polynomials:

∂2ρ2

∂η2 ≈
N

∑
i=0

N

∑
j=0

(
cn

ij

)2 d2

dη2 Ti(η)Tj(ξ), (30)

∂2ρ2

∂ξ2 ≈
N

∑
i=0

N

∑
j=0

(
cn

ij

)2
Ti(η)

d2

dξ2 Tj(ξ). (31)

Combining the discretized forms of the time and space derivatives, we obtain the fully
discretized version of the the model Equation (25), given by

1
Γ(2 − α)

n

∑
k=0

ρk+1 − ρk

∆tα
((k + 1)∆t)1−α − (k∆t)1−α

=
N

∑
i=0

N

∑
j=0

[
(cn

ij)
2
(

d2

dη2 Ti(η) +
d2

dξ2 Tj(ξ)

)]
(32)

+ h

(
N

∑
i=0

N

∑
j=0

cn
ijTi(η)Tj(ξ)

)a
⎛
⎝1 − ℓ

(
N

∑
i=0

N

∑
j=0

cn
ijTi(η)Tj(ξ)

)b
⎞
⎠.

129



Fractal Fract. 2024, 8, 325

4. Error Analysis

This section deals with the error analysis of our proposed numerical scheme. Before
the main results, we state some useful results in the form of lemmas [49].

Lemma 1 (Estimate for the Truncation Error). Consider the truncation error of a function u
when approximated by its truncated Chebyshev series, denoted as PNu, where

PNu =
N

∑
k=0

ûkTk,

and ûk represents the Chebyshev-series coefficients of u. The truncation error u − PNu, measured
in the weighted L2 norm over the interval (−1, 1), satisfies the inequality

‖u − PNu‖L2
w(−1,1) ≤ CN−m‖u‖Hw

m;N(−1,1), (33)

for all functions u belonging to the weighted Sobolev space Hw
m(−1, 1) with m ≥ 0. Here, C is a

constant that depends on N and m, and Hw
m;N(−1, 1) represents the Sobolev space characterized by

integrating the function and its derivatives up to order m, each weighted by the Chebyshev weight.

Lemma 2 (Interpolation Error Estimate). The interpolation error associated with approximating
a function u by its interpolant INu, which is defined at Chebyshev Gauss points across three
different families. For this interpolant, which belongs to the polynomial space PN , an important
error estimates. The error between the function u and its interpolant, measured in the weighted L2

norm over the interval [−1, 1], adheres to the following bound:

‖u − INu‖L2
w(−1,1) ≤ CN−m‖u‖Hw

m;N(−1,1), (34)

‖u − INu‖L∞
w (−1,1) ≤ CN

1
2−m‖u‖Hw

m;N(−1,1), (35)

where C represents a constant and m ≥ 1 reflects the smoothness level of the function. This estimate
is valid under the condition that u is an element of the weighted Sobolev space Hw

m(−1, 1). This
space is characterized by considering functions that maintain their derivatives up to the m-th order,
each weighted appropriately over the interval.

Lemma 3 (Integration Error Estimate). Given a function u from the weighted Sobolev space
Hw

m(−1, 1) with m ≥ 1 and a polynomial ϕ from the space PN , the error produced by applying a
Gauss-type quadrature formula for integration relative to the Chebyshev weight can be estimated as
follows. Consider the integral of the product of u and ϕ, weighted by the Chebyshev weight w(x),
and its approximation by the quadrature formula:

∣∣∣∣
∫ 1

−1
u(x)ϕ(x)w(x) dx − (u, ϕ)N

∣∣∣∣ ≤ CN−m‖u‖Hw
m;N(−1,1)‖ϕ‖L2

w(−1,1), (36)

where

• (u, ϕ)N denotes the approximation of the integral by the Gauss-type quadrature.
• C is a constant dependent on N and m, indicating the rate at which the error diminishes as the

polynomial degree N or the smoothness m of the function u increases.
• ‖u‖Hw

m;N(−1,1) and ‖ϕ‖L2
w(−1,1) are the norms measuring the magnitude of u and ϕ in their

respective function spaces.

One can state and prove the following error estimates for the fractional-order time
discretization.
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Theorem 1 ([31]). Let ρ be the exact solution of the model Equation (25), and let {ρk}K
k=0 be

the time-discrete solution of with the initial condition ρ0(x) = ρ(x, 0); then, the following error
estimates hold:

1. For 0 ≤ a < 1,

‖ρ(tk)− ρk‖1 ≤ cu,aTa∆t2−a, k = 1, 2, . . . , K, (37)

where cu,a := cu
1−a with cu a constant defined in (3.3).

2. As a → 1,
‖ρ(tk)− ρk‖1 ≤ cuT∆t, k = 1, 2, . . . , K. (38)

Similarly for the space discretization, using Lemmas 1–3, one can state and prove the
following results of exponential order of convergence.

Theorem 2. Let {ρN
k }K

k=0 be the solution of the problem given in Equation (25) with the initial
condition ρN

0 taken to be INρ(0), and {ρk}K
k=0 be the numerical solution. Suppose ρk ∈ Hm(K) ∩

H0
1(K), m > 1; then,

• For 0 ≤ α < 1,

‖ρk − ρN
k ‖L2 ≤ cα∆tαN−m max

0≤j≤k
‖ρj‖m, k = 1, 2, . . . , K, (39)

where cα = c
1−α with c a constant.

• As α → 1,

‖ρk − ρN
k ‖L2 ≤ c∆t−1N−m max

0≤j≤k
‖ρj‖m, k = 1, 2, . . . , K, (40)

where c only depends on T.

Proof. Assume rN = ρN
k+1 − wN where wN is any function in PN

0 (K). By direct calculation,

AN(rN , rN) = A(ρk+1 − wN , rN) + A(wN , rN)− AN(wN , rN) + FN(rN)− F(rN), (41)

which leads to

‖rN‖2
1,N ≤ ‖ρk+1 − wN‖1‖rN‖1 +

∣∣∣A(wN , rN)− AN(wN , rN)
∣∣∣

+
∣∣∣F(rN)− FN(rN)

∣∣∣ ∀wN ∈ PN−1
0 (K). (42)

∣∣∣F(rN)− FN(rN)
∣∣∣ =

∣∣∣(1 − b1)
[
(ρk, rN)− (ρN

k , rN)N
]

+
k−1

∑
j=1

(bj − bj+1)
[
(ρk−j, rN)− (ρN

k−j, rN)N
]

(43)

+ bk

[
(ρ0, rN)− (ρN

0 , rN)N
]∣∣∣.

(g, rN)− (gN , rN)N ≤ (cN−m‖g‖m + ‖g − gN‖L2)‖rN‖L2 . (44)

Applying this to g = ρj; gN = ρN
j for all j = 1, 2, . . . , k, we derive

∣∣∣F(rN)− FN(rN)
∣∣∣ ≤ (1 − b1)‖eN

k ‖L2 +
k−1

∑
j=1

(bj − bj+1)‖eN
k−j‖L2

+ bk‖eN
0 ‖L2 + cN−m max

0≤j≤k
‖ρj‖m‖rN‖L2 . (45)

This shows that the order of convergence of our combined numerical scheme is
O(δt2−α + N−m) in the L2 norm in the case of spatial coordinates. Similarly, if we use the

L∞ norm in the space coordinate, then the error estimate is of O(δt2−α + N
1
2−m).
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5. Numerical Results

We present in this section a number of numerical examples to confirm our theoretical
justification, as given in Theorems 1 and 2. In our simulations, we use a fixed time t = 0.1
in comparison between the exact solution and the solution obtained by using the proposed
scheme. In addition to this, in all of our simulations, we use a PC with processor 12th Gen
Intel(R) Core(TM) i7-1255U and 16 GB RAM. The average CPU time in all these simulations
is 0.03 s for collocation points from 15–50. The algorithm for these simulations is given in
Appendix A.

Example 1. Consider the model Equation (25) with a = 0, b = 1, that is, we have the following
linear fractional-order-in-time biological population model of the form

∂αρ

∂tα
=

∂2ρ2

∂η2 +
∂2ρ2

∂ξ2 + hρ, (46)

subject to the initial condition:
ρ0 =

√
ηξ. (47)

Equation (46), subject to the initial condition given in Equation (47), corresponds to Malthu-
sian law. The exact solution is given by

ρ(η, ξ, t) =
√

ηξehtEαhtα, (48)

where Eαhtα is the Mittag–Leffler function. When α → 1, then the exact solution becomes

ρ(η, ξ, t) =
√

ηξ
∞

∑
n=0

(ht)n

Γ(1 + n)
=
√

ηξeht. (49)

In our simulations, we use the fractional-order α = 0.5. We compare our results for
different collocation points with the exact solution as shown in Figures 1–3. The error
behavior between the exact and numerical solution is shown in Figure 4. One can see that
the error between the exact and approximate solution decays exponentially by increasing
the number of collocation points. These results emphasize the reliability of our numerical
scheme, which is crucial for accurately predicting population dynamics in more detailed
biological studies, making it practical for real-world biological population models where
computational resources may be limited.

Figure 1. Example 1: Exact (left) vs. numerical solution (right) at N = 15 collocation points.
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Figure 2. Example 1: Exact (left) vs. numerical solution (right) at N = 25 collocation points.

Figure 3. Example 1: Exact (left) vs. numerical solution (right) at N = 50 collocation points.

Figure 4. Example 1: Error behavior of exact solution vs. numerical solution at N = 15 (left) and at
N = 20 (right).
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Example 2. Consider the model Equation (25) with a = 1, b = 1. This gives us Verhulst law, and
the model Equation (25) becomes

∂αρ

∂tα
=

∂2ρ2

∂η2 +
∂2ρ2

∂ξ2 + hρ(1 − ℓρ), (50)

subject to the initial condition

ρ0 = e

√
hℓ
8 (η+ξ), (51)

The exact solution is given by

ρ0 = e

√
hℓ
8 (η+ξ)Eαhtα (52)

For α → 1, the exact solution has the form

ρ0 = e

√
hℓ
8 (η+ξ)+ht. (53)

The numerical experiments are performed between exact and approximate solution
for α = 0.5 and different collocations points, as shown in Figures 5–7. The error behavior
between the exact and numerical solution is given in Table 1. Again, one can see how fast
the error is decreasing while increasing the number of collocation points. The numeri-
cal solution accurately captures the behavior of the exact solution, which represents the
population growth with a carrying capacity, highlighting how the population stabilizes
over time, which is a key aspect in ecological studies. The high-level accuracy is essential
for making reliable predictions, especially in scenarios involving critical decisions about
species conservation or resource management.

Table 1. Example 2: Error behavior of exact vs. numerical solution.

N L∞ L2 N L∞ L2

6 9.541 × 10−1 4.086 × 10−1 8 4.842 × 10−2 2.485 × 10−2

10 8.145 × 10−3 3.139 × 10−3 12 2.670 × 10−4 1.210 × 10−4

14 1.650 × 10−5 7.114 × 10−6 16 4.706 × 10−7 2.099 × 10−7

18 2.132 × 10−8 6.028 × 10−9 20 5.213 × 10−10 1.906 × 10−10

Figure 5. Example 2: Exact (left) vs. numerical solution (right) at N = 15 collocation points.
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Figure 6. Example 2: Exact (left) vs. numerical solution (right) at N = 25 collocation points.

Figure 7. Example 2: Exact (left) vs. numerical solution (right) at N = 50 collocation points.

Example 3. In this example, we choose a = −1, b = 1. This gives us the model Equation (25) of
the form

∂αρ

∂tα
=

∂2ρ2

∂η2 +
∂2ρ2

∂ξ2 + h(ρ−1 − ℓ), (54)

subject to the initial condition

ρ0 =

√
hℓ

4
η2 +

hℓ

4
ξ2 + ξ + 5, (55)

The exact solution is given by

ρ(η, ξ, t) = ρ0 +
∞

∑
n=0

(htα)ρ0

Γ(1 + (n + 1)α)
+

(
htα

ρ2
0

)n

(56)

For α → 1, the transform exact solution is

ρ(η, ξ, t) = ρ0 +
ht

ρ0
e

ht

ρ2
0

.
(57)
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Figures 8–10 show the comparison between the actual and numerical solution for
α = 0.5 with different collocations points. Our simulations confirmed that our numerical
method performed very well against the exact solution. Further validation of exponential
error decays is shown in Table 2. These results illustrate the model’s capability to handle
nonlinear dynamics, which are common in biological systems where interactions between
species or within populations can lead to complex behaviors.

Figure 8. Example 3: Exact (left) vs. numerical solution (right) at N = 15 collocation points.

Figure 9. Example 3: Exact (left) vs. numerical solution (right) at N = 25 collocation points.

Table 2. Example 3: Error behavior of exact vs. numerical solution.

N L∞ L2 N L∞ L2

6 1.901 × 100 7.400 × 10−1 8 1.951 × 10−1 1.009 × 10−1

10 2.218 × 10−2 6.456 × 10−3 12 1.093 × 10−3 5.585 × 10−4

14 7.824 × 10−5 2.584 × 10−5 16 3.480 × 10−6 1.295 × 10−6

18 1.039 × 10−7 3.863 × 10−8 20 6.763 × 10−9 1.602 × 10−9
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Figure 10. Example 3: Exact (left) vs. numerical solution (right) at N = 50 collocation points.

6. Conclusions

This study has successfully shown how fractional calculus may be used to describe
fractional-order-in-time partial differential equations, which are used to simulate the dy-
namic behavior of biological populations. It has been shown that using the L1 scheme for
time-fractional derivatives is a reliable and accurate way to deal with the nonlocal proper-
ties included in these kinds of equations. This method is especially crucial for capturing
the genetic and memory components that are essential to biological systems. Additionally,
it has been demonstrated that the Chebyshev spectral method for spatial derivatives is a
highly effective method that offers an exponential rate of convergence, making it perfect
for managing intricate boundary conditions and geometries that are common in biolog-
ical modeling. Our algorithms provide a powerful tool for approximation solutions in
situations where analytical methods are not sufficient, as confirmed by our theoretical
and numerical investigation. Our approach is accurate and reliable, as evidenced by the
well-aligned numerical experiments with the theoretical predictions.

Funding: This research received no external funding.

Data Availability Statement: The original contributions presented in the study are included in the
article, further inquiries can be directed to the corresponding author.

Conflicts of Interest: The author declares no conflicts of interest.

Appendix A

Algorithm A1 Algorithm for Solving the Fractional PDE (25):

1. Parameter Initialization:

• Define h, a, ℓ, b, and fractional order α.
• Define time step size ∆t and total simulation time T.

2. Spatial Domain Discretization:

• Define Chebyshev nodes ηj = cos
(

jπ
Nη

)
and ξi = cos

(
iπ
Nξ

)
for j, i = 0, 1, . . . , N.

• Construct Chebyshev differentiation matrices Dη and Dξ .

3. Initial Condition:
ρ(η, ξ, 0) = given initial condition. (A1)
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Algorithm A1 Cont.

4. Time Discretization Using L1 Scheme:

∂αρ

∂tα
≈ 1

Γ(2 − α)

n

∑
k=0

wk(ρ
n−k − ρn−k−1), (A2)

where wk = (∆t)α(k1−α − (k − 1)1−α).
5. Assembling the System:

1
Γ(2 − α)

n

∑
k=0

wkρn−k = D2
η(ρ

n)2 + D2
ξ(ρ

n)2 + h(ρn)a(1 − ℓ(ρn)b), (A3)

6. Matrix Formulation:

• Represent the problem in matrix form to prepare for numerical solving:

Aρn+1 = bn, (A4)

where A is derived from the L1 and Chebyshev methods, and bn contains the
known terms from time step n.

7. Iterative Solving:

• Solve the matrix equation using an appropriate iterative method:

ρn+1 = A−1bn. (A5)

8. Advance Time Step:

• Increment n and repeat from step 4 until t = T.

9. Postprocessing:

• Plot ρ(η, ξ, t).
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Abstract: The utilization of time-fractional PDEs in diverse fields within science and technology

has attracted significant interest from researchers. This paper presents a relatively new numerical

approach aimed at solving two-term time-fractional PDE models in two and three dimensions. We

combined the Liouville–Caputo fractional derivative scheme with the Strang splitting algorithm for

the temporal component and employed a meshless technique for spatial derivatives utilizing Lucas

and Fibonacci polynomials. The rising demand for meshless methods stems from their inherent mesh-

free nature and suitability for higher dimensions. Moreover, this approach demonstrates the effective

approximation of solutions across both regular and irregular domains. Error norms were used to

assess the accuracy of the methodology across both regular and irregular domains. A comparative

analysis was conducted between the exact solution and alternative numerical methods found in the

contemporary literature. The findings demonstrate that our proposed approach exhibited better

performance while demanding fewer computational resources.

Keywords: Strang splitting algorithm; Caputo derivative; Fibonacci polynomials; Lucas polynomials;

two-term fractional-order PDE

1. Introduction

Over the last decade, there has been considerable interest in fractional partial differen-
tial equations (PDEs), making it a vibrant research field for scientists and engineers. PDEs
possess the capability to describe numerous complex phenomena across diverse fields,
including biology, fluid mechanics, plasma physics, optics, acoustics, financial mathematics,
climate modeling, materials science, and electromagnetics [1,2]. Fractional calculus, which
deals with derivatives and integrals of non-integer order, finds broad applications in science
and technology. In physics, it models complex systems with non-local behavior, such as
anomalous diffusion in fluid dynamics and memory effects in viscoelastic materials [3].
Engineering benefits from fractional calculus are found in signal processing, control theory,
and optimization, offering robustness and efficiency in dynamic systems. Telecommuni-
cations utilize it for modeling wireless communication channels and improving channel
estimation algorithms. Fractional calculus enables advancements in understanding and
optimizing real-world processes and systems across various domains [4]. The fractional
spatio-temporal PDE models are crucial in describing complex phenomena [5], whereas the
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two-scale fractal PDE models are essential for simulating intricate structures in materials
science and physics, offering insights into multiscale behaviors and enhancing our under-
standing of fractal geometries in natural and engineered systems [6]. In particular, the
Sobolev model equation is integral across various scientific fields, providing a robust frame-
work for investigating phenomena with spatial variations. Its relevance extends across
disciplines, encompassing physics, engineering, biology, and finance. In physics, Sobolev
PDEs are commonly utilized to model phenomena such as heat conduction, fluid dynamics,
and quantum mechanics [7,8]. Engineers employ them to analyze structural mechanics,
electromagnetism, and signal-processing problems [7]. Furthermore, Sobolev PDEs find
applications in image processing, medical imaging, and geophysical exploration. Their
adaptability lies in their capacity to handle irregular domains and boundary conditions
while providing solutions that demonstrate smoothness properties.

Numerous studies explored the applications and theoretical foundations of Sobolev
PDEs, underscoring their significance in both theoretical and applied contexts. However,
numerous researchers faced challenges in deriving and formulating various complex
phenomena within nonlinear PDEs with integer orders [9]. In response, fractional calculus
is regarded as a viable solution to this issue, as it incorporates a nonlocal property that
is absent in nonlinear PDEs with integer orders [10]. Observations indicate that multi-
term time-fractional PDEs were proposed to enhance the modeling accuracy in depicting
anomalous diffusion processes, capturing various types of viscoelastic damping, accurately
representing power-law frequency dependence, and simulating the flow of a fractional
Maxwell fluid [11]. This study focused on the two-term time-fractional Sobolev equation in
two and three dimensions, defined as follows:

∂ξ1𝒰

∂tξ1
+ ∂ξ2𝒰

∂tξ2
− β ∂

∂t

(
∂2
𝒰

∂r2 + ∂2
𝒰

∂s2

)
− δ

(
∂2
𝒰

∂r2 + ∂2
𝒰

∂s2

)
+ η

(
𝒰

(
∂2
𝒰

∂r2 + ∂2
𝒰

∂s2

))

+η
(

∂𝒰
∂r + ∂𝒰

∂s

)2
+ γ𝒰 = F(r, s, t), r, s ∈ Ω ⊂ R2, 0 < ξ2 ≤ ξ1 ≤ 1, t > 0,

(1)

and
∂ξ1𝒰

∂tξ1
+ ∂ξ2𝒰

∂tξ2
− β ∂

∂t

(
∂2
𝒰

∂r2 + ∂2
𝒰

∂s2 + ∂2
𝒰

∂z2

)
− δ

(
∂2
𝒰

∂r2 + ∂2
𝒰

∂s2 + ∂2
𝒰

∂z2

)

+ η
(
𝒰

(
∂2
𝒰

∂r2 + ∂2
𝒰

∂s2 + ∂2
𝒰

∂z2

))
+ η

(
∂𝒰
∂r + ∂𝒰

∂s + ∂𝒰
∂z

)2
+ γ𝒰

= F(r, s, z, t), r, s, z ∈ Ω ⊂ R3, 0 < ξ2 ≤ ξ1 ≤ 1, t > 0,

(2)

with the following initial and boundary conditions:

𝒰(r, 0) = 𝒰0(r), (3)

𝒰(r, t) = f1(r, t), r ∈ ∂Ω ⊂ R
d, d = 2, 3. (4)

where the constants β, δ, η, and γ have known values. Moreover, ∂ξ1

∂tξ1
and ∂ξ2

∂tξ2
denote

the Caputo derivatives in accordance with Caputo [12] and applied to 𝒰(r, t), where
0 < ξ2 ≤ ξ1 ≤ 1.

Several works delved into the existence and uniqueness of solutions for Sobolev
equations, as documented in [13]. Ewing [14] applied the finite difference method to
tackle 2D Sobolev equations. The study [15] used a computationally appealing and precise
local meshless technique to provide numerical solutions for three-dimensional two- and
three-term time-fractional PDE models. Various test problems were employed to assess the
accuracy and reliability of the proposed approach. The paper by Luo et al. [16] introduces
a reduced-order extrapolated finite difference iterative scheme for 2D Sobolev equations,
employing proper orthogonal decomposition to construct a reduced-order solution space
model, thus reducing the computational costs. Numerical experiments validated the
scheme’s efficiency and accuracy, indicating its potential for efficient Sobolev equation
solving. An accurate and efficient local meshless technique is used in the article [17] to
explore numerical solutions for two-term time-fractional Sobolev models. The method
approximates the solution on a uniform or scattered set of nodes, yielding sparse and
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well-conditioned coefficient matrices. Another paper by Luo et al. [18] introduces a novel
method that employs reduced-order techniques and extrapolation within a Crank–Nicolson
finite volume framework for 2D Sobolev equations. It aims to improve the computational
efficiency and accuracy, showcasing promising outcomes via numerical simulations. The
paper by Li et al. [19] introduces an extended mixed finite element approach for solving 2D
Sobolev equations, integrating a novel formulation with stable discretization for accurate
solutions and computational efficiency. Numerical experiments highlighted its effectiveness
and superiority over existing methods, especially in maintaining stability and convergence
properties. Heydari et al. [20] introduced a novel method that employs orthonormal
Bernoulli polynomials to solve distributed-order time-fractional 2D Sobolev equations,
which demonstrated accuracy through four test problems. Gao et al. [21] used the local
discontinuous Galerkin finite element method to solve a particular class of 2D Sobolev
equations, while another work [22] applied the weak Galerkin finite element method,
providing an error estimate. Abu et al. [23] presented a method for solving time- and space-
fractional Sobolev equations with Caputo fractional derivatives in n-dimensional space,
utilizing the reproducing kernel Hilbert space method, which is particularly effective for
Caputo class derivatives. A meshless RBFs technique for solving 2D time-fractional Sobolev
equations was presented by Hussain et al. [24]. This method uses a finite difference formula
for time-fractional derivative approximation and RBFs for spatial operator approximation.
Using a Liouville–Caputo derivative technique for the time derivative, Ahmad et al. [25]
suggested an efficient meshless method for estimating the numerical solution of 3D time-
fractional Sobolev equations. Furthermore, Zhang et al. [26] used a characteristic splitting
mixed finite element approach to solve convection-dominated Sobolev equations.

In response to its extensive applications, researchers explored a multitude of numer-
ical and analytical methodologies [27,28] for addressing complex PDEs. These methods
encompass various techniques, such as the alternating direction implicit method [29],
the homotopy perturbation method [30], the Laplace transform technique [31], the vari-
ational approach [32,33], finite element methods (FEMs) [34], finite difference methods
(FDMs) [16,35], gradient descent iterative method [36], spectral methods [37], the exp-
function method [38], the alternating direction method [39], and meshless methods [40].
Notably, the straightforward nature of the FDM, FEM, and meshless techniques is notewor-
thy. Recently, hybrid methodologies have emerged to enhance the efficiency and accuracy
of numerical solutions, including meshless methods, the method of lines utilizing Fibonacci
polynomials, and combinations of the FDM and FEM.

This investigation focused on computing numerical solutions for the suggested model
using a hybrid methodology based on the Caputo derivative. This approach integrates
Fibonacci polynomials with the established Caputo derivative concept, exploiting the rela-
tionship between Fibonacci and Lucas polynomials. This integration provides a significant
advantage in the straightforward implementation of higher-order derivatives. Moreover,
the proposed approach reduces computational costs by enhancing the accuracy, even with a
limited number of collocation sites. Remarkably, these polynomials find diverse real-world
applications in the realm of differential equations.

Addressing boundary value problems accurately involves exploring the interplay be-
tween Chebyshev and Lucas polynomials, as demonstrated in previous studies [41,42]. For
instance, the Lucas sequence was utilized to approximate integro-differential equations [43],
while Lucas polynomials were applied to solve higher-order differential equations [44].
Additionally, the efficacy of a Fibonacci polynomial methodology in resolving Volterra–
Fredholm integral differential equations was demonstrated [45]. Furthermore, a hybrid
Taylor–Lucas polynomial approach was introduced for addressing delay difference equa-
tions [46]. Notably, novel methodologies for solving time-dependent PDEs were proposed
by combining hybrid Fibonacci and Lucas polynomial schemes [47,48]. Moreover, re-
searchers employed finite differences and Lucas polynomials to achieve effective numerical
solutions for various PDE models [49,50].
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Motivation

The primary objective of this research was to introduce a relatively new numerical
approach designed to solve two-term time-fractional PDE models in both two and three
dimensions. This method combines the Liouville–Caputo fractional derivative scheme
with the Strang splitting algorithm for the temporal component and utilizes a meshless
technique for spatial derivatives, incorporating Lucas and Fibonacci polynomials. Below
are some of the highlighted key features of the proposed study:

• The complex characteristics of fractional nonlinear PDEs make calculating analytical
solutions challenging, driving ongoing research efforts to develop accurate and ef-
ficient numerical methodologies, with the two-term fractional order Sobolev model
equation in both two and three dimensions holding significant importance across
multiple scientific domains.

• This study aimed to introduce an efficient numerical framework specifically designed
for solving PDEs with temporal fractions.

• The proposed methodology adopts a hybrid approach, integrating Fibonacci and Lucas
polynomials with finite difference techniques, while also addressing the temporal
direction through the utilization of the Liouville–Caputo fractional derivative in
conjunction with a splitting mechanism.

• Lucas and Fibonacci polynomials, unlike orthogonal counterparts, like Chebyshev
polynomials, are non-orthogonal, eliminating the need for interval transformations.
Additionally, they facilitate the straightforward approximation of higher-order deriva-
tives for unknown functions.

• Furthermore, the approach is characterized by its simplicity and ability to enhance
the accuracy, even in scenarios involving fewer nodal points, with the aim to pro-
vide a robust and effective numerical solution to the intricate challenges posed by
nonlinear PDEs.

This paper is organized as follows: Section 2 provides an overview of the fundamen-
tal terms and concepts. The proposed technique for the underlying model equations is
discussed in Section 3, while theoretical results regarding stability and error analysis are
presented in Section 4. Section 5 utilizes numerical experiments to validate the method’s
efficacy, and finally, Section 6 summarizes the outcomes and presents concluding remarks
to finalize the work.

2. Basic Concepts in Fractional Calculus and Polynomial Theory

In fractional calculus, fractional derivatives are crucial. Fractional calculus finds appli-
cations in various fields, including physics, engineering, biology, and finance, providing a
powerful framework for modeling complex phenomena characterized by memory, non-
locality, and fractal behavior. The fundamental definition of fractional calculus involves the
generalization of differentiation and integration to non-integer orders. Here are some basic
definitions of frequently used fractional derivatives.

Definition 1. The Riemann–Liouville derivative [51,52] is a mathematical concept used to general-
ize the notion of a derivative to functions that are not necessarily differentiable in the traditional
sense. It is commonly applied in the field of fractional calculus to describe the behavior of functions
with fractional orders of differentiation.

∂ξ
𝒰(r, t)

∂tξ
=

1
Γ(1 − ξ)

d

dt

T∫

t

(𝒰(r, ϑ)−𝒰(r, T))

(ϑ − t)ξ
dϑ, 0 < ξ < 1. (5)
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Definition 2. Caputo’s fractional derivative [12] is a widely used mathematical tool in fractional
calculus, providing a powerful approach for describing and analyzing non-local and memory-
dependent phenomena in various scientific and engineering fields.

∂ξ
𝒰(r, t)

∂tξ
=

1
Γ(1 − ξ)

t∫

0

∂𝒰(r, ζ)

∂ζ
(t − ζ)−ξdζ, 0 < ξ < 1. (6)

Definition 3. The Atangana and Baleanu fractional derivative [53], proposed by Atangana and
Baleanu, is a non-local operator that extends the concept of fractional calculus. It provides a novel
approach for modeling complex systems that exhibit memory and non-local behavior.

ABC
a

∂ξ
𝒰(r, t)

∂tξ
=

B(ξ)

1 − ξ

t∫

a

𝒰
′
(r)Eξ

(
− ξ(t − r)ξ

1 − ξ

)
dr, 0 < ξ < 1. (7)

Definition 4. He’s fractional derivative [54]:

∂ξ
𝒰(r, t)

∂tξ
=

1
Γ(1 − ξ)

d

dr

t∫

t0

(t − ζ)−ξ [𝒰0(ζ)−𝒰(ζ)], 0 < ξ < 1. (8)

2.1. Fibonacci and Lucas Polynomial Theory

Below are explanations outlining the definitions, practical implications, and utilization
of Lucas and Fibonacci polynomials, encompassing tasks such as approximating unfamiliar
functions and their derivatives.

Fibonacci polynomials [49]:

The Fibonacci polynomial, which is an extension of Fibonacci numbers, is defined
through a three-term recurrence relation:

Fk(r) = kFk−1(r) + Fk−2(r), k ≥ 2, (9)

where the sequence begins with F0(r) = 0 and F1(r) = 1. When r = 1, Equation (9)
generates the familiar sequence of Fibonacci numbers.

Lucas polynomials [49]:

One can define the Lucas polynomials using the three-term recurrence relation:

Lk(r) = kLk−1(r) + Lk−2(r), k ≥ 2, (10)

with L0(r) = 2 and L1(r) = r as initial values. This allows Equation (10) to produce a series
of Lucas numbers with r = 1.

Lemma 1 ([49]). The kth Fibonacci polynomial Fk(r) can be used to define the mth-order derivative
of the kth Lucas polynomial Lk(r):

L
(m)
k (r) = kFk(r)Dm−1, Dm−1 = D × D × D · · · D︸ ︷︷ ︸

(m−1)time

(11)

where an (M + 1)× (M + 1) matrix is represented by D, which can be described as

D =

⎡
⎢⎢⎢⎣

0 0 . . . 0
0
... d
0

⎤
⎥⎥⎥⎦,
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where d is computed according to [49]:

dij =

{
i sin (j−i)π

2 , if j > i,

0, otherwise.

2.2. Function Approximation

Suppose 𝒰 ∈ L2(R), and let 𝒰(r) be continuous. Then, through the linear combination
of the kth Lucas polynomials, it is possible to represent 𝒰 as

𝒰(r) =
∞

∑
k=0

ΛkLk(r), (12)

where the Lucas polynomials are denoted as Lk(r), with the corresponding unknown
coefficients represented by Λk.

Likewise, 𝒰(r) can also be expanded under the same conditions by using a linear
combination of the kth Fibonacci polynomials, as demonstrated below:

𝒰(r) =
∞

∑
k=0

ΛkFk(r).

In this context, Fk(r) denotes the Fibonacci polynomials, while Λk stands for the
coefficients yet to be determined.

The Lucas polynomial series can be used to expand the function 𝒰(r) and find the
first-order derivative:

𝒰
′(r) =

∞

∑
k=0

ΛkL′
k(r), (13)

and the function 𝒰(r)’s associated mth-order derivative is given as

𝒰
m(r) =

∞

∑
k=0

ΛkL
(m)
k (r), (14)

where

𝒰
m(r) =

dm
𝒰(r)

drm , L
(m)
k (r) =

dmLk(r)

drm .

Equations (13) and (14) can be written by incorporating the relation (11):

𝒰
′(r) =

∞

∑
k=0

ΛkkFk(r), (15)

and similarly, the mth derivative can be computed as

𝒰
(m)(r) =

∞

∑
k=0

ΛkkFk(r)Dm−1, (16)

in which D and Dm−1 are defined above.

Remark 1. In numerical computations, the expansion of 𝒰(r) and its mth derivative often involves
utilizing truncated Fibonacci and Lucas polynomial series. In other words, we take

𝒰(r) ≃
M

∑
k=0

ΛkLk(r), M ∈ N,
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and

𝒰
(m)(r) ≃

M

∑
k=0

ΛkL
(m)
k (r) =

M

∑
k=0

ΛkkFk(r)Dm−1, M ∈ N, (17)

3. Suggested Methodology

This section is devoted to formulating the suggested meshless method for approximat-
ing the 2D time-fractional Sobolev model equations given in Equations (20) and (21). To
simplify the notation throughout the discussion in this section, we introduce the following:

𝒰
n+1(r) = 𝒰(r, s, tn+1), 𝒰

n+1
ij = 𝒰(ri, sj, tn+1),

where ri and sj are the collocation points specified as follows, and tn = n × δt, with δt
representing the time step size:

ri = a + ihr, sj = c + jhs, (i, j = 1, 2, · · · , M, M ∈ N),

where hr = (b − a)/M and hs = (d − c)/M are the mesh step sizes in the r and s spatial
directions throughout the spatial domain Ξ = [a, b]× [c, d] ⊂ R2.

3.1. Time Discretization

The widely recognized L1-formula, with O(δt2−ξ1) as the approximation order error,
where 0 < ξ1 ≤ 1, is utilized to derive the discrete representation of the (n + 1)th time
level, as outlined in [55,56].

∂ξ1𝒰(r, tn+1)

∂tξ1
=

1
Γ(1 − ξ1)

∫ tn+1

0

∂𝒰(r, ζ)

∂ζ
(tn+1 − ζ)−ξ1 dζ,

=
1

Γ(1 − ξ1)

n

∑
j=0

∫ (j+1)×δt

j×δt

∂𝒰(r, ζ)

∂ζ
(tn+1 − ζ)−ξ1 dζ,

=
1

Γ(1 − ξ1)

n

∑
j=0

[
𝒰

j+1(r)−𝒰
j(r)

δt
+ O(δt)

] ∫ (j+1)×δt

j×δt
((j + 1)δt − ζ)−ξ1 dζ.

Following integration, it gives

∂ξ1𝒰(s, r, tn+1)

∂tξ1
=

⎧
⎪⎪⎨
⎪⎪⎩

Aξ1 ∑
n
j=0 Kξ1

(j)
[
𝒰

n−j+1(r)−𝒰
n−j(r)

]
+ O(δt2−ξ1), 0 < ξ1 < 1,

𝒰
n+1(r)−𝒰

n(r)
δt + O(δt), ξ1 = 1,

(18)

where Aξ1
= δt−ξ1

Γ(2−ξ1)
and Kξ1

(j) = (j + 1)1−ξ1 − (j)1−ξ1 . Therefore, we may write the
following for 0 < ξ1 < 1 after ignoring the error term:

∂ξ1𝒰(r, tn+1)

∂tξ1
= Aξ1

[
𝒰

n+1(r)−𝒰
n(r)

]
+ Aξ1

n

∑
j=1

Kξ1
(j)
[
𝒰

n−j+1(r)−𝒰
n−j(r)

]
, (19)

with Kξ1
(j) = 1 and j = 0. The fractional derivative of order ξ2 can be found above.

Before applying the θ-weighted rule to the suggested Equations (1)–(4), let us rewrite
them in compact form as follows:
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∂ξ1𝒰(r, t)

∂tξ1
+

∂ξ2𝒰(r, t)

∂tξ2
− β

∂∇2
𝒰(r, t)

∂t
− δ∇2

𝒰(r, t)− η∇(𝒰(r, t)∇𝒰(r, t)) + γ𝒰(r, t) = f (r, t),

r ∈ Ω ⊂ R
d, d = 2, 3, 0 < ξ2 ≤ ξ1 ≤ 1, t > 0,

(20)

with the following conditions:

𝒰(r, 0) = 𝒰0(r), 𝒰(r, t) = f1(r, t), r ∈ ∂Ω, (21)

where the Laplacian and gradient operators are represented by the symbols ∇2 and ∇,
respectively.

The θ-weighted rule is now applied, and Equation (20) becomes

Aξ1
𝒰

n+1(r) + Aξ2𝒰
n+1(r)− β

(∇2
𝒰

n+1(r)−∇2
𝒰

n(r)

δt

)
− θδ∇2

𝒰
n+1(r) + θγ𝒰n+1(r)

− θ∇
(
𝒰

n+1(r)∇𝒰
n+1(r)

)
= Aξ1

𝒰
n(r) + Aξ2𝒰

n(r) + (1 − θ)δ∇2
𝒰

n(r) + (1 − θ)η∇(𝒰n(r)∇𝒰
n(r))

− (1 − θ)γ𝒰n(r) + f n+1
θ (r)− Qn

ξ (r),

(22)

where
f n+1
θ (r) = θ f n+1(r) + (1 − θ) f n(r),

and

Qn
ξ (r) = Aξ1

n

∑
j=1

Kξ1
(j)
[
𝒰

n−j+1(r, s)−𝒰
n−j(r, s)

]
+ Aξ2

n

∑
j=1

Kξ2(j)
[
𝒰

n−j+1(r, s)−𝒰
n−j(r, s)

]
.

Since

∇
(
𝒰

n+1(r)∇𝒰
n+1(r)

)
= 𝒰

n+1(r)∇2
𝒰

n+1(r) +
(
𝒰

n+1
x (r)

)2
+
(
𝒰

n+1
y (r)

)2
,

the nonlinear terms are linearized as follows [24]:

𝒰
n+1(r)∇2

𝒰
n+1(r) ≡ 𝒰

n+1(r)∇2
𝒰

n(r) +𝒰
n(r)∇2

𝒰
n+1(r)− 2𝒰n(r)∇2

𝒰
n(r), (23)

(
𝒰

n+1
r (r)

)2
≡ 2𝒰n

r (r)𝒰
n+1
r (r)− (𝒰n

r (r))
2, (24)

(
𝒰

n+1
s (r)

)2
≡ 2𝒰n

s (r)𝒰
n+1
s (r)− (𝒰n

s (r))
2. (25)

The insertion of Equations (23)–(25) and simple rearrangement reduces Equation (22) to

(
Aξ1

+ Aξ2 + θγ − θ∇2
𝒰

n(r)
)
𝒰

n+1(r)−
(

β

δt
+ θδ − θη𝒰n(r)

)
∇2

𝒰
n+1(r) (26)

=
(

Aξ1
+ Aξ2 − (1 − θ)γ

)
𝒰

n(r)−
(

β

δt
− (1 − θ)δ

)
∇2

𝒰
n(r) + Hn+1

θ (r)− Gn
θ (r), (27)

where

Hn+1
θ (r) =

⎧
⎪⎨
⎪⎩

f n+1
θ − Qn

ξ𝒰
n(r), n ≥ 1,

f 1
θ , n = 1,

(28)

and

Gn
θ (r) = ηθ

(
2𝒰n(r)∇2

𝒰
n(r) + (𝒰n

x (r))
2 +

(
𝒰

n
y (r)

)2
)
+ (1 − θ)η∇(𝒰n(r)∇𝒰

n(r)).
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Let us label

pn
θ (r) = Aξ1

+ Aξ2 + θγ − θη∇2
𝒰

n(r), qn
θ =

β

δt
+ δθ − θη𝒰n(r),

rθ = Aξ1
+ Aξ2 − (1 − θ)γ, sθ =

β

δt
− (1 − θ)δ,

which, when substituted into Equation (26), give us

pn
θ𝒰

n+1(r)− qn
θ∇2

𝒰
n+1(r) = rθ𝒰

n(r) + sθ∇2
𝒰

n(r) + Hn+1
θ (r)− Gn

θ (r). (29)

We have approximated in the time direction at this point using Equation (29). Fur-
thermore, the time direction is coupled with the splitting technique known as the Strang
splitting algorithm, which is given as follows [4,57–59]:

∂𝒰1

∂t
= ℒ1𝒰1(t) with t ∈ [tn, tn+1/2] and 𝒰1(t

n) = 𝒰
n
sp (30)

∂𝒰2

∂t
= ℒ2𝒰2(t) with t ∈ [tn, tn+1] and 𝒰2(t

n) = 𝒰1(t
n+1/2) (31)

∂𝒰3

∂t
= ℒ1𝒰3(t) with t ∈ [tn+1/2, tn+1] and 𝒰3(t

n+1/2) = 𝒰2(t
n+1) (32)

where L1𝒰(t) = δ∇2
𝒰(t) − η

(
𝒰 ∗ ∇2

𝒰(t)
)
, L2𝒰(t) = −η(∇𝒰(t))2 − γ𝒰(t), and

𝒰
n
sp = 𝒰0 is the initial solution defined for Equation (20). The Strang splitting method

achieves second-order accuracy. Further information can be found in reference [4].

3.2. Spatial Discretization

We can expand the function 𝒰(r), which is a two-dimensional function denoted as
𝒰(r, s), into the following truncated series of Lucas polynomials, expressed as a product:

𝒰(r, s) ≃
M

∑
k=0

M

∑
m=0

ΛkmLk(r)Lm(s) =
M

∑
k=0

M

∑
m=0

ΛkmLkm(r, s), (33)

where Lkm(r, s) = Lk(r)Lm(s). Equation (33) can be expressed in compact form as

𝒰(r, s) ≃ LT(r, s)Λ, (34)

with Λ = [Λ00, Λ01, Λ10, · · · , ΛMM]T and LT(r, s) = [L00(r, s),L01(r, s),L10(r, s), · · · ,LMM(r, s)].
One can compute and briefly represent the consolidated partial derivatives of 𝒰(r, s)

as follows:

∂𝒰(r, s)

∂r
≃

M

∑
k=0

M

∑
m=0

Λkm
dLk(r)

dr
Lm(s) =

M

∑
k=0

M

∑
m=0

Λkmk(Fk(r))Lm(s) = LT

r (r, s)Λ,

and

∂2
𝒰(r, s)

∂r2 ≃
M

∑
k=0

M

∑
m=0

Λkm
d2Lk(r)

dr2 Lm(s) =
M

∑
k=0

M

∑
m=0

Λkmk(Fk(r)D)Lm(s) = LT

rr(r, s)Λ,

where

LT

r (r, s) = { ∂

∂r
Lkm(r, s)}M

k,m=0 = {dLk(r)

dr
Lm(s)}M

k,m=0 = {k(Fk(r))Lm(s)}M
k,m=0,

LT

rr(r, s) = { ∂2

∂r2 Lkm(r, s)}M
k,m=0 = {d2Lk(r)

dr2 Lm(s)}M
k,m=0 = {k(Fk(r)D)Lm(s)}M

k,m=0.

149



Fractal Fract. 2024, 8, 364

Similarly

∂𝒰(r, s)

∂s
≃

M

∑
k=0

M

∑
m=0

ΛkmLk(r)
dLm(s)

dr
=

M

∑
k=0

M

∑
m=0

ΛkmmLk(r)(Fm(s)) = LT

s (r, s)Λ,

and

∂2
𝒰(r, s)

∂s2 ≃
M

∑
k=0

M

∑
m=0

ΛkmLk(r)
d2Lm(s)

ds2 =
M

∑
k=0

M

∑
m=0

ΛkmmLk(r)(Fm(s)D) = LT

ss(r, s)Λ,

with

LT

s (r, s) = { ∂

∂s
Lkm(r, s)}M

k,m=0 = {Lk(r)
d2Lm(s)

ds2 }M
k,m=0 = {mLk(r)(Fm(s))}M

k,m=0.

LT

ss(r, s) = { ∂2

∂s2 Lkm(r, s)}
M

k,m=0
= {Lk(r)

d2Lm(s)

ds2 }M
k,m=0 = {mLk(r)(Fm(s)D)}M

k,m=0.

These results can be further refined as

∇𝒰(r, s) =
∂𝒰

∂r
+

∂𝒰

∂s
≃
(
LT

r (r, s) + LT

s (r, s)
)
Λ. (35)

∇2
𝒰(r, s) =

∂2
𝒰

∂r2 +
∂2
𝒰

∂s2 ≃
(
LT

rr(r, s) + LT

ss(r, s)
)
Λ. (36)

It is consequently possible to express the time-dependent function 𝒰(r, s, t) and its
compact form partial derivatives as follows:

𝒰(r, s, t) ≈ LT(r, s)Λ(t),
∂2
𝒰(r, s, t)

∂r2 ≈ LT

rr(r, s)Λ(t),
∂2
𝒰(r, s, t)

∂s2 ≈ LT

ss(r, s)Λ(t), (37)

with

∇𝒰(r, s, t) ≈
(

LT

r (r, s) + LT

s (r, s)
)

Λ(t), ∇2
𝒰(r, s, t) ≈

(
LT

rr(r, s) + LT

ss(r, s)
)

Λ(t), (38)

where Λ(t) represents the vector of the time-varying unknown coefficients. Once the infor-
mation obtained from Equations (37) and (38) is combined with Equation (29), we obtain

pn
θ L(r, s)Λn+1 − qn

θ

(
LT

rr(r, s) + LT

ss(r, s)
)

Λ
n+1

= rθL(r, s)Λn + rθ

(
LT

rr(r, s) + LT

ss(r, s)
)

Λ
n + Hn+1

θ (r, s)− Gn
θ (r, s), ∀(r, s) ∈ Ω. (39)

The boundary conditions are stated as

BL(r, s)Λn+1 ≈ f1(r, s, tn+1) = f n+1
1 (r, s), ∀(r, s) ∈ ∂Ω, (40)

where Λ
n = Λ(tn).

3.3. Full Discretization

We collocate Equations (39) and (40) at discrete mesh points ri and sj at their respec-
tive time levels to derive the discrete form of the time-fractional differential equation as
expressed in Equation (20), resulting in the subsequent set of equations:

pn
θ L(ri, sj)Λ

n+1 − qn
θ

(
LT

rr(ri, sj) + LT

ss(ri, sj)
)

Λ
n+1

= sθL(ri, sj)Λ
n + rθ

(
LT

rr(ri, sj) + LT

ss(ri, sj)
)

Λ
n + Hn+1

θ (ri, sj)− Gn
θ (ri, sj), ∀(ri, sj) ∈ Ω,
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and
BL(ri, sj)Λ

n+1 ≈ f1(ri, sj, tn+1) = f n+1
1 (ri, sj), ∀(ri, sj) ∈ ∂Ω,

where i, j = 0, 1, 2, · · · , M. This implies the following matrix–vector form:

GΛ
n+1 = HΛ

n +Qn+1. (41)

In this case, the matrix entries are provided by

(G)ij =

⎧
⎨
⎩

pn
θ L(ri, sj)− qn

θ

(
LT

rr(ri, sj) + LT
ss(ri, sj)

)
, (ri, sj) ∈ Ω,

BL(ri, sj), (ri, sj) ∈ ∂Ω,
(42)

(H)ij =

⎧
⎨
⎩

sθL(ri, sj) + rθ

(
LT

rr(ri, sj) + LT
ss(ri, sj)

)
, (ri, sj) ∈ Ω,

0, (ri, sj) ∈ ∂Ω,
(43)

and

(Q)ij =

{
Hn+1

θ (ri, sj)− Gn
θ (ri, sj), (ri, sj) ∈ Ω,

f1(ri, sj, tn+1), (ri, sj) ∈ ∂Ω.
(44)

The construction of the scheme for the two-dimensional model equation is finalized.
Simplifying it to a one-dimensional form involves eliminating the variable s so that r = r.
The linear system represented by Equation (41) benefits from the assurances provided
by [47], ensuring the existence of a solution. Solving Equation (41) allows for the determina-
tion of the vector containing unknown coefficients at every time step. The initial condition
allows for initialization in the following manner:

LT(ri, sj)Λ
0 = 𝒰(ri, sj, 0) = 𝒰0 =⇒ AΛ

0 = 𝒰0.

When solved, it yields Λ
0. Utilizing Equation (41), the iteration is subsequently

repeated up to the relevant time level. Upon obtaining the coefficients vector, the solution
at the corresponding time level can be determined by

𝒰(ri, sj, tn) = LT(ri, sj)Λ
n, ∀(ri, sj) ∈ Ω, (n ≥ 0).

A similar procedure can be used in the case of a three-dimensional problem.

4. Analyzing Errors

To conduct the error analysis, we referred to the following theorem.

Theorem 1. The error can be defined as follows when denoting the exact solution as Û and the
computed solution obtained by the suggested meshless method as 𝒰 for the underlying problems.

The error term E is constrained within the following expression:

|E | ≤ 4 exp(2κ) cosh2(2P)κ2(N+1)

((N + 1)!)2 .

Proof. Consider the absolute error between the exact solution and the approximate numer-
ical solution using the proposed hybrid meshless method:

|E | = |Û−𝒰|,
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where Û = ∑
∞
k=0 ∑

∞
m=0 ΛkΛmLk(r)Lm(s) and 𝒰 = ∑

M
k=0 ∑

M
m=0 ΛkΛmLk(r)Lm(s). Next, the

truncated term is as follows:

|E | =
∞

∑
k=N+1

∞

∑
m=N+1

ΛkΛmLk(r)Lm(s) (45)

In [60], it is demonstrated that

Lm(r) ≤ 2ϑm,

|Λm| ≤
Pm cosh(2P)

m!
,

where the famous golden ratio is denoted by ϑ. Consequently, Equation (45) suggests that

|E | = 4 cosh2(2P)
∞

∑
k=N+1

∞

∑
m=N+1

κk+m

k!m!
,

where κ = Pϑ. This inequality can alternatively be expressed as

|E | = 4 exp(2κ) cosh2(2P)

[
1 − Γ(N + 1, κ)

Γ(N + 1)

]2

. (46)

The incomplete gamma function in this case is Γ(N + 1, κ), and the complete gamma
function is Γ(N + 1) [61]. Equation (46) can be expressed in integral form as follows:

|E | ≤ 4 exp(2κ) cosh2(2P)

(N!)2

[∫ κ

0
tN exp(−t)dt

]2

.

Since exp(−t) < 1, ∀t > 0, we obtain:

|E | ≤ 4 exp(2κ) cosh2(2P)κ2(N+1)

((N + 1)!)2 .

Stability Analysis

The stability of the meshless method is crucial for ensuring the accuracy and conver-
gence of numerical solutions over time. By mitigating numerical instabilities, the meshless
method maintains the solution quality and reliability across diverse computational do-
mains. The stability analysis was carried out in this work by utilizing a matrix technique.
The methodology employed was consistent with that described in previous studies [24,62].

Theorem 2. Consider w as the computed approximate solution to the underlying problem. In this
context, the amplification matrix ̥ is defined as ̥ = LG−1HL−1. It is essential to confirm that the
absolute maximum eigenvalue of ̥, denoted as ρ(̥), stays less than or equal to 1 to ensure stability.

Proof. We aim to show that ̥ = LG−1HL−1. From Equation (17), we write

Λ
n = L−1

𝒰
n. (47)

The relationship can be described utilizing Equation (41):

𝒰
n+1 = LG−1HL−1

𝒰
n + LG−1Qn+1. (48)

Moreover, the error vector
E = Û−𝒰, (49)
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satisfies the following condition:
En+1 = ̥En.

Thus, the amplification matrix is defined as ̥ = LG−1HL−1. Adherence to the
Lax–Richtmyer stability criterion [63], which requires that

||̥|| ≤ 1,

ensures the stability of the method. An illustration demonstrating that the spectral radius
ρ(̥) must not exceed 1 to fulfill this condition is provided in the subsequent section.

5. Discussion and Numerical Results

The proposed hybrid meshless method (HMM) was assessed for its effectiveness and
precision in solving model Equations (1) and (2). The evaluation includes various scenarios
with both uniform and scattered nodes in non-rectangular and rectangular domains. The
CPU time was measured in seconds for all cases. All computations were performed on an
HP PC laptop equipped with an Intel(R) Core(TM) i5-7200U CPU @ 2.50 GHz 2.71 GHz
and 8 GB of RAM, using MATLAB (R2012a) software.

The accuracy was measured using error norms, including the following:

e∞ = max(|Û−𝒰|), erms =

√√√√∑
N
i=1

(
Ûi −𝒰i

)2

N
, eL2 =

√√√√δh
N

∑
h=1

(
Ûh −𝒰h

)2
, (50)

where the exact solution is Û, while the approximate solution is 𝒰.

Problem 1. The exact solution of model (1) with δ = 1 and η = γ = 0 is

𝒰(r, t) = e−t sin(πr) sin(πs), r = (r, s) ∈ Ω. (51)

The numerical results of the proposed hybrid meshless method were used to compute the
numerical solution of Problem 1, as shown in Table 1. The e∞ norm was obtained for the final times
t = 1 and t = 5. The obtained numerical results were compared with the method reported in [17].
The results using explicit, implicit, and Crank–Nicolson schemes for the proposed method were
computed for different time step sizes, and one could conclude that as the time step size δt decreased,
the accuracy of the proposed method increased. The comparison shows that the HMM was more
accurate than the method given in [17]. In Table 2, the numerical results are presented, where they
were computed by the proposed method using different fractional orders ξ, various nodal points
N, δt = 0.001, and t = 1. The results were computed as e∞ and erms norms. It can be observed
that increasing the number of nodes improved the accuracy to some extent, whereas changing the
fractional order did not significantly affect the accuracy. In this case, the HMM yielded good and
accurate results. Additionally, the CPU time is provided in this table, demonstrating the efficiency
of the suggested method.

Comparative results of the HMM and [17] are presented in Figure 1 for various nodes in
the form of different error norms. It can be observed that the results produced by the HMM were
superior to those of [17]. Furthermore, Figure 2 depicts the comparison of the numerically computed
solution with the exact solution, along with the absolute error.
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Table 1. Problem 1 numerical results using HMM and [17].

e∞

Method δt
t = 1 t = 5

MQ [17] HMM MQ [17] HMM

Explicit 0.1 1.8985 × 10−2 8.5002 × 10−3 1.5971 × 10−3 8.3765 × 10−4

0.05 9.2780 × 10−3 5.3215 × 10−3 8.2371 × 10−4 5.1759 × 10−4

0.025 4.5880 × 10−3 1.0717 × 10−3 4.1804 × 10−4 1.0352 × 10−4

0.0125 2.2815 × 10−3 9.0701 × 10−3 2.1057 × 10−4 9.0047 × 10−5

0.00625 1.1377 × 10−3 8.0520 × 10−4 1.0567 × 10−4 8.6471 × 10−5

Implicit 0.1 1.7500 × 10−2 8.3842 × 10−3 1.7904 × 10−3 8.5478 × 10−4

0.05 8.9133 × 10−3 5.2547 × 10−3 8.7217 × 10−4 5.5662 × 10−4

0.025 4.4982 × 10−3 1.1406 × 10−3 4.3024 × 10−4 1.0639 × 10−4

0.0125 2.2594 × 10−3 9.9320 × 10−4 2.1364 × 10−4 9.9331 × 10−5

0.00625 1.1323 × 10−3 8.1481 × 10−4 1.0645 × 10−4 8.1101 × 10−5

Crank–Nicolson 0.1 3.0659 × 10−4 9.0152 × 10−5 3.0957 × 10−5 8.3810 × 10−6

0.05 8.4249 × 10−5 1.2486 × 10−5 8.4718 × 10−6 1.1754 × 10−6

0.025 2.4213 × 10−5 6.2692 × 10−6 2.3901 × 10−6 3.1455 × 10−7

0.0125 7.1414 × 10−6 8.6427 × 10−7 6.8938 × 10−7 8.0157 × 10−8

0.00625 2.1392 × 10−6 1.1503 × 10−7 2.0203 × 10−7 5.8023 × 10−8

Table 2. Problem 1 numerical results using HMM.

ξ1 = ξ2 = 0.1 ξ1 = ξ2 = 0.5 ξ1 = ξ2 = 0.9
N

e∞ eems e∞ eems e∞ eems
CPU Time

10 3.1204 × 10−9 2.7813 × 10−9 4.2101 × 10−9 3.7823 × 10−9 5.9105 × 10−9 3.7930 × 10−9 15.64
20 2.6534 × 10−9 2.6591 × 10−9 3.6587 × 10−9 3.6901 × 10−9 3.8257 × 10−9 3.7133 × 10−9 18.89
25 2.0673 × 10−9 2.2873 × 10−9 3.2510 × 10−9 3.1246 × 10−9 3.2780 × 10−9 3.3854 × 10−9 19.05

N2

E
rr
o
r

Figure 1. Problem 1 error norms using HMM (left) and [17] (right).
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Figure 2. Problem 1 exact and numerical solutions using HMM with absolute error.

Problem 2. Consider the model Equation (1) with β = 1 and γ = δ = 0 having the exact solution

𝒰(r, t) = er−s−t sin(πr) sin(πs), r = (r, s) ∈ Ω. (52)

Meshless methods offer the advantage of computing solutions without being constrained by the
computational geometry. These methods naturally adjust to the geometry of the domain and offer
greater flexibility in handling boundary conditions. Additionally, meshless methods often exhibit
excellent scalability and parallelizability, making them suitable for large-scale simulations. To assess
the true effectiveness of the proposed meshless method, various irregular geometries were examined.
To evaluate the performance of the proposed HMM in non-rectangular domains, as shown in Figure 3
for Problem 2, Table 3 presents the numerical results obtained using ξ1 = ξ2 = 0.5 and δt = 0.0001,
along with various time values, in comparison with the method outlined in [17]. The table illustrates
that the HMM achieved greater accuracy compared with [17]. Additionally, in Table 4, the numerical
outcomes derived from the proposed HMM were utilized to compute the eL2 norm for δt, which was
then compared with the results obtained using the method reported in [17]. Employing explicit,
implicit, and Crank–Nicolson schemes, the proposed method’s results were calculated for different
time step sizes, demonstrating that decreasing δt enhanced the accuracy of the proposed approach.
This comparison highlights the superior performance of the HMM over the method described in [17].

Figure 4 presents a comparison of the HMM results with those in [17] using various error
norms for different fractional orders ξ. Once again, the HMM demonstrated superior performance.
Figure 5 illustrates the close agreement between the exact and numerical solutions of Problem 2 with
the parameters ξ = 0.5, N = 102, δt = 0.001, and time t = 0.5 in terms of the absolute error.

r

s

r

s

Domain 1 Domain 2

Figure 3. Computational domains.
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Table 3. Problem 2 numerical results of HMM using domains given in Figure 3.

Domain 1 Domain 2 Domain 2 Domain 2 Domain 2
Time Error Norm

HMM HMM IQ [17] MQ [17] IMQ [17]

t = 1 e∞ 7.0321 × 10−5 8.1482 × 10−4 2.8503 × 10−3 1.0762 × 10−4 1.6486 × 10−4

erms 6.2456 × 10−6 8.2453 × 10−5 5.3969 × 10−4 1.2498 × 10−5 1.6465 × 10−5

eL2 6.2710 × 10−5 9.3608 × 10−4 5.8179 × 10−3 1.3473 × 10−4 1.7749 × 10−4

t = 2 e∞ 3.1438 × 10−5 4.1930 × 10−5 6.9177 × 10−3 7.4827 × 10−5 1.2021 × 10−4

erms 4.4711 × 10−6 5.591 × 10−6 1.1019 × 10−3 8.9038 × 10−6 1.2001 × 10−5

eL2 5.5379 × 10−5 5.6283 × 10−5 1.1879 × 10−2 9.5983 × 10−5 1.2937 × 10−4

t = 3 e∞ 9.3510 × 10−6 1.8646 × 10−5 1.9053 × 10−2 3.9556 × 10−5 6.5942 × 10−5

erms 1.0392 × 10−6 2.8366 × 10−6 2.6854 × 10−3 4.8116 × 10−6 6.5818 × 10−6

eL2 2.0406 × 10−5 2.9815 × 10−5 2.8949 × 10−2 5.1869 × 10−5 7.0953 × 10−5

Table 4. Problem 2 results of HMM and [17] for ξ1 = ξ2 = 0.6.

eL2

t = 1 t = 1 t = 2 t = 2

Method δt HMM [17] HMM [17]

Explicit 0.1 2.0148 × 10−2 5.1872 × 10−2 1.3867 × 10−2 3.7523 × 10−2

0.05 9.5461 × 10−3 2.5444 × 10−2 8.4984 × 10−3 1.8637 × 10−2

0.025 8.3610 × 10−3 1.2612 × 10−2 5.5718 × 10−3 9.2941 × 10−3

0.125 3.4513 × 10−3 6.2822 × 10−3 1.9845 × 10−3 4.6433 × 10−3

0.00625 9.3719 × 10−4 3.1364 × 10−3 8.3805 × 10−4 2.3216 × 10−3

Implicit 0.1 1.3584 × 10−2 4.8894 × 10−2 9.7926 × 10−3 3.7120 × 10−2

0.05 9.4241 × 10−3 2.4862 × 10−2 7.3200 × 10−3 1.8657 × 10−2

0.025 7.3721 × 10−3 1.2528 × 10−2 5.7313 × 10−3 9.3447 × 10−3

0.0125 2.6219 × 10−3 6.2845 × 10−3 9.9378 × 10−4 4.6732 × 10−3

0.00125 8.9866 × 10−4 3.1458 × 10−3 7.5566 × 10−4 2.3357 × 10−3

Crank–Nicolson 0.1 4.3021 × 10−4 3.5095 × 10−4 1.5380 × 10−4 2.5348 × 10−4

0.05 7.6320 × 10−5 9.2813 × 10−5 7.3817 × 10−5 7.1868 × 10−5

0.025 9.8431 × 10−6 4.9749 × 10−5 8.0116 × 10−6 3.8280 × 10−5

0.0125 4.9669 × 10−6 2.4637 × 10−5 2.0167 × 10−6 1.8688 × 10−5

0.00625 7.3499 × 10−7 1.0941 × 10−5 7.9173 × 10−7 8.2362 × 10−6

ξ1 = ξ2

e L
2

Figure 4. Problem 2 error norms of HMM and [17].
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Figure 5. Problem 1 exact and numerical solutions of HMM with absolute error.

Problem 3. The exact solution of model (2) with δ = 1 and η = γ = 0 is as follows:

𝒰(r, t) = e−t sin(πr) sin(πs) sin(πz), r = (r, s, z) ∈ Ω. (53)

The results for Problem 3 were compared with the exact solution and the approach provided
in [15] for different values of δt, N = 10, and using t = 1 and ξ1 = ξ2 = 0.3. This served to
illustrate the accurateness and effectiveness of the suggested strategy. These findings are presented in
Table 5, along with the CPU time. The table shows that after a few iterations, the suggested meshless
technique yielded better results. The accuracy also improved with an increase in the number of
iterations, with both error norms reaching as low as 10−10.

The findings of Problem 3 were computed using the proposed HMM in Table 6, with varying
values of fractional order ξ for N = 10, t = 1, and t = 2. We evaluated the outcomes in terms of
erms and e∞. Accurate results were found for several time-fractional orders in this problem, and
these results were also compared with the findings published in [15].

Table 5. Problem 3 numerical results of HMM and [15].

δt e∞ erms e∞ [15] erms [15] CPU Time of HMM

0.1 7.7488 × 10−5 3.7354 × 10−5 2.9285 × 10−4 9.2558 × 10−5 1.39
0.05 2.6377 × 10−5 8.5621 × 10−6 7.3125 × 10−5 2.3112 × 10−5 1.54
0.01 6.7313 × 10−7 3.5478 × 10−7 2.9195 × 10−6 9.2271 × 10−7 2.60
0.005 2.4307 × 10−7 8.5271 × 10−8 7.2896 × 10−7 2.3039 × 10−7 3.96
0.001 8.1268 × 10−9 3.2773 × 10−9 2.9007 × 10−8 9.1677 × 10−9 17.73

0.0005 2.4501 × 10−10 9.9388 × 10−10 7.2236 × 10−9 2.2830 × 10−9 42.14

Table 6. Problem 3 numerical results of HMM and [15].

t = 1 t = 2
ξ

e∞ erms e∞ [15] erms [15] e∞ erms e∞ [15] erms [15]

0.2 8.69430 × 10−8 5.3992 × 10−8 7.3170 × 10−7 2.3126 × 10−7 7.9456 × 10−8 3.9267 × 10−8 5.3832 × 10−7 1.7014 × 10−7

0.4 9.65010 × 10−8 6.5001 × 10−8 7.3053 × 10−7 2.3089 × 10−7 8.1655 × 10−8 4.9126 × 10−8 5.3746 × 10−7 1.6987 × 10−7

0.6 9.27650 × 10−8 8.4952 × 10−8 7.2584 × 10−7 2.2940 × 10−7 7.8037 × 10−8 5.7601 × 10−8 5.3402 × 10−7 1.6878 × 10−7

0.8 8.72000 × 10−8 7.3528 × 10−8 7.0765 × 10−7 2.2364 × 10−7 7.6584 × 10−8 3.9773 × 10−8 5.2065 × 10−7 1.6455 × 10−7

For Problem 3, we considered some non-rectangular domains shown in Figure 6 and in
Figure 7 (left) to evaluate the performance of the suggested HMM. In domain 3, scattered nodes
were taken into account, as shown in Figure 6 (left). The results obtained in this case are shown in
Figure 8, whereas the results for domain 5 are shown in Figure 7 (right) for final times up to t = 4.
These results provide evidence of the accurate performance of the HMM in non-rectangular domains.
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Domain 3 Domain 4

Figure 6. Computational domains.

Domain 5

Figure 7. Problem 3 domain 5 (left) and error (right).

Figure 8. Problem 3 error norms using domain 3 (left) and domain 4 (right).

Problem 4. The exact solution for Equation (2) with β = 1, γ = 1, and δ = π2 is

U (r, t) = et sin(πr) sin(πs) sin(πz), r = (r, s, z) ∈ Ω. (54)

For Problem 4, the behavior of the numerical and exact solutions using N = 21 and t = 0.01
are visualized in Figure 9 at z = 0.5 and ξ1 = ξ2 = 0.5, along with the absolute error. One can see
from these figures that the approximate solution was very compatible with the exact solution. Also,
Figure 10 shows the contour graph of the problem at ξ1 = ξ2 = 0.3 and ξ1 = ξ2 = 0.9.
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Figure 9. Problem 4 exact and numerical solutions of HMM with absolute error at z = 0.5.
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Figure 10. Problem 4 absolute error at ξ1 = ξ2 = 0.3 (left) and ξ1 = ξ2 = 0.9 (right), whereas z = 0.5.

6. Conclusions

This paper introduces a relatively new numerical methodology for addressing two-
term time-fractional PDE models in two and three dimensions. We combined the Louiville–
Caputo fractional derivative scheme with the Strang splitting algorithm for the temporal
component and employed a meshless technique for spatial derivatives utilizing Lucas
and Fibonacci polynomials. Error norms were utilized to evaluate the accuracy of the
methodology across regular and irregular domains. A comparative study was conducted
between the exact solution and alternative numerical methods outlined in the contemporary
literature. This inquiry illustrated that the proposed approach yielded superior performance
while requiring reduced computational resources. Moreover, the study illustrated how
minimizing the errors could be accomplished by refining the spatial and temporal stages.
With minor modifications, the proposed approach could be applied to various intricate
fractional partial differential equations that arise in fields such as fluid dynamics, quantum
mechanics, and financial mathematics, where they model phenomena with significant
spatial and temporal dependencies.
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Abstract: This work integrates the fast Alikhanov method with a compact scheme to solve
the time-fractional Kuramoto–Sivashinsky (KS) equation with the generalized Burgers’
type nonlinearity. Initially, the Alikhanov algorithm, designed to handle the Caputo
fractional derivative on non-uniform time grids, effectively avoids the initial singularity.
Additionally, the combination of the Alikhanov method with the sum-of-exponentials (SOE)
technique significantly reduces both computational cost and memory requirements. By
discretizing the spatial direction using a compact finite difference method, a fully discrete
scheme is developed, achieving fourth-order convergence in the spatial domain. Stability
and convergence are analyzed through energy methods. Several numerical examples are
provided to validate the theoretical framework, demonstrating that the proposed algorithm
is accurate, stable, and efficient.

Keywords: time-fractional Kuramoto–Sivashinsky equation; fast Alikhanov method;
sum-of-exponentials technique; non-uniform time steps; compact difference method

1. Introduction

The Kuramoto–Sivashinsky (KS) equation belongs to an important class of chaotic partial
differential equations that serve as a bridge between the partial differential equation and
dynamical system frameworks. Kuramoto [1] originally proposed the KS equation in his
study of phase turbulence in reaction–diffusion systems, while Sivashinsky [2] introduced it
in his analysis of flame combustion propagation models. The KS equation has a wide range of
applications in simulation science and engineering, such as the evolution of the flow of fluid
films on inclined planes [3], flame front instability [4], interfacial turbulence [5], etc.

In this paper, we study the time-fractional KS equation with the generalized Burgers’
type nonlinearity:

C
0 Dα

t u(x, t) + up(x, t)ux(x, t)− μuxx(x, t) + λuxxxx(x, t) = f (x, t),

0 < x < L, 0 < t ≤ T,
(1)

with the initial condition (IC)

u(x, 0) = u0(x), 0 < x < L, (2)

and the boundary conditions (BCs)

Fractal Fract. 2025, 9, 218 https://doi.org/10.3390/fractalfract9040218
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u(0, t) = u(L, t) = 0, 0 ≤ t ≤ T,
uxx(0, t) = uxx(L, t) = 0, 0 ≤ t ≤ T,

(3)

where μ > 0 is the viscosity coefficient, p ≥ 1 is a positive integer, perturbation parameters
0 < λ ≤ 1, L > 0, T > 0 are fixed values, and u0(x) and f (x, t) are prescribed real
functions. The equations are complex, and their combination of fractional-order derivative
KS equations and Burgers’ nonlinear terms provides them with greater flexibility to capture
the intricate dynamical behaviors observed in various physical systems.

• When the fourth-order derivative uxxxx and the source term are not included in the
equation, Equation (1) transforms into a time-fractional generalized Burgers equa-
tion [6] as follows:

C
0 Dα

t u(x, t) + up(x, t)ux(x, t)− μuxx(x, t) = 0, 0 < x < L, 0 < t ≤ T, (4)

where upux is the generalized Burgers’ type nonlinearity.
• When α = 1, p = 1, Equation (1) is the usual KS equation as follows:

ut(x, t) + u(x, t)ux(x, t)− μuxx(x, t) + uxxxx(x, t) = 0, 0 < x < L, 0 < t ≤ T, (5)

and many pioneering studies have been carried out [7–9].
• When p = 1, Equation (1) is the generalized fractional KS equation [10] as follows:

C
0 Dα

t u(x, t) + u(x, t)ux(x, t)− μuxx(x, t) + uxxxx(x, t) = 0, 0 < x < L, 0 < t ≤ T, (6)

In recent years, numerical computational algorithms for solving the time-fractional
KS equation have been developed and become imperative. Many numerical methods
are already available for studying KS equations, including those of the form presented
in Equation (5). Mittal [11] proposed a quintic B-spline collocation method based on the
Crank–Nicolson scheme for temporal discretization, aimed at approximating the solution
to the KS equation. In [12], a locally discontinuous Galerkin method is implemented to
obtain the numerical solution to the KS equation. The implicit–explicit BDF method was
developed by Akrivis and Smyrlis [13] for simulating the KS equation.

However, there are few research studies on effective numerical algorithms for solving
fractional KS equations. For the fractional KS equation of the type Equation (6), the weak
singularity of the solution generated by the fractional derivative presents a difficult problem
to solve. At present, the effective method to solve this problem is to use the variable step
numerical method, which concentrates more grid points around the weak singularity and
employs a sparse grid where the solution changes slowly. Indeed, the L1 formula for the
construction of piecewise linear interpolation was proposed by Langlands [14], which
leads to a temporal convergence order of 1 + γ for 0 < γ < 1. Since then, the L1 formula
has been widely used to deal with Caputo fractional derivatives [15–20]. Furthermore,
for the numerical solution to pure sub-diffusion equations, there are several high-order
discrete convolution forms for the approximation of the Caputo fractional-order time
derivatives, such as the L1-2 scheme [21–23] and the L2-1σ formula, which is based on
linear interpolation on the last subinterval [tk−1, tk] and quadratic polynomial interpolation
on the rest of the subintervals [tk−1, tk] (for details, please refer to [24]). These formulas can
achieve second-order temporal accuracy for sufficiently smooth solutions.

Due to the advantages of the L2-1σ formula, we will study the approximation of the
Caputo fractional derivative by the variable time-step Alikhanov formula. Influenced
by [25,26], we also give the regularity assumptions on the exact solution u as follows:
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∥∥∥∥∥
∂ku

∂tk

∥∥∥∥∥
H2(0,L)

≤ C
(

1 + tσ−k
)

, k = 0, 1, 2, 3, (7)

∥∥∥C
0 Dα

t u
∥∥∥

H6(0,L)
+ ‖u‖H8(0,L) ≤ C, (8)

where 0 < t ≤ T, and σ ∈ (0, 1) ∪ (1, 2) is a regularity parameter. In this paper, we only
consider the case of λ = 1.

In order to obtain a more efficient algorithm for solving the problem and avoid the
issue of large computational costs caused by the historical dependence of the fractional
derivative, one of the most effective methods is the SOE technique [27–29], which is applied
in approximating the convolution kernel t−α with a uniform absolute error ǫ. There have
been many research studies on the nonlinear KS equation with a spatial fourth derivative,
employing various methods such as the quintic B-spline collocation method [30], cubic
Hermite collocation [31], Chebyshev collocation method [10], and Sinc–Galerkin method
[32]. The compact difference scheme has good characteristics and high accuracy and is
widely used to solve a variety of equations [33–37]. The application of a compact difference
scheme to the spatial discretization of fractional KS equations is exactly the starting point of
our present work. The theoretical part of the proof makes use of the classical energy
method [38–40]. Moreover, the main contributions of this work can be summarized
as follows:

• For the complex KS equation, we first apply the non-uniform Alikhanov formula to
approximate the Caputo fractional derivative, and then treat the generalized Burgers’
nonlinear term. Then, we combine the second-order time scheme and the SOE tech-
nique to establish the fast Alikhanov second-order scheme. This approach improves
numerical accuracy and reduces computational costs.

• The high-order compact difference scheme is proposed for the first time to be applied
to the KS equation with the generalized Burgers’ nonlinear term, which can improve
the spatial convergence rate to the fourth order.

• We demonstrate in detail the convergence and stability of the fully discrete scheme
by the energy argument. In addition, we provide numerical examples to validate the
theoretical analysis and demonstrate the efficiency of the algorithm by comparing fast
and non-fast Alikhanov schemes.

The outline of this paper is as follows: In Section 2, we introduce some useful nota-
tions and lemmas. Additionally, some properties of compact difference formulas and fast
Alikhanov formulas are analyzed. In Section 3, the high-order fast Alikhanov compact
difference scheme is constructed. The stability and convergence of a full-discrete scheme
are investigated. Numerical examples verify the stability and efficiency of the algorithm
and the correctness of the theory in Section 4. The conclusion is summarized in Section 5.

2. Preliminaries

In this section, we first recall some basic formulations and useful lemmas. For ease
of exposition and proof, we define some notations. To make our analysis extendable, the
conditions and properties of the discrete convolution kernel in the Alikhanov formula are
also introduced in this section.

2.1. Properties of Compact Difference Scheme

Let the spatial step size h := L/M, where M is a given positive integer. We denote
xj = jh (0 ≤ j ≤ M) and U h := {u|u = (u0, u1, . . . , uM), 0 ≤ j ≤ M}. For any u, v ∈ U h,
we denote the following notations:
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∇+uj+1 =
1
h

(
uj+1 − uj

)
, ∇−uj−1 =

1
h

(
uj − uj−1

)
,

∇huj =
1

2h

(
uj+1 − uj−1

)
, ∆xuj =

uj+1 − 2uj + uj−1

h2 .

We also need to introduce the subspace of U h as Uh := {u ∈ U h|u0 = uM = 0}, and
define the inner product and norm as follows:

〈u, v〉 = h
M−1

∑
j=1

ujvj, (u, v) = h
M

∑
j=1

(
∇+uj

)(
∇+vj

)
,

‖u‖ =
√
〈u, u〉, |u|1 =

√
(u, u), ‖u‖∞ = max

0≤j≤M
|uj|.

Furthermore, we denote the following:

A1uj := (1 +
h2

6
∆x)uj, A2uj := (1 +

h2

12
∆x)uj.

Thus, for the discretization of the second and fourth derivatives of the function
u = u(x, t), we have the following formulas:

ux(xj) = A−1
1 ∇hUj +O(h4), uxx(xj) = A−1

2 ∆xUj +O(h4). (9)

The following transformation can be advanced for the nonlinear term:

upux = vux =
1

p + 2
[vux + (vu)x], (10)

where v := up, and

vj

∂uj

∂x
+

∂ujvj

∂x
= vjA−1

1 ∇huj +A−1
1 ∇h(vjuj) +O(h4) = ϕ(uj, vj) +O(h4). (11)

Lemma 1 ([41]). For any grid functions u, v ∈ Uh, then the following holds:

〈∇hu, v〉 = −〈u,∇hv〉, 〈∆xu, v〉 = −(u, v).

Lemma 2 ([41]). For any grid functions u ∈ Uh, then the following holds:

‖u‖∞ ≤
√

L

2
|u|1, ‖u‖ ≤ L√

6
|u|1, |u|1 ≤ 2

h
‖u‖.

Lemma 3 ([42]). For real symmetric positive-definite matrices A−1
1 , A−1

2 , and ω, u ∈ Uh, we

obtain the following:
(
A−1

1 ω, u
)
= (V1ω,V1u) =

(
ω,A−1

1 u
)

,
(
A−1

2 ω, u
)
= (V2ω,V2u) =

(
ω,A−1

2 u
)

,

where V1 and V2 are upper triangular matrices, which can be obtained by the Cholesky factorization

of A−1
1 and A−1

2 , namely, A−1
1 = (V1)

TV1, A−1
2 = (V2)

TV2.

Proof. The proof of the theorem can be referred to in ([42], Lemma 2.1c).

Lemma 4 ([43]). Let ω, u ∈ Uh, then we can obtain the following:
(
A−1

1 ∇hω, u
)
=
(
∇hA−1

1 ω, u
)
= −

(
A−1

1 ω,∇hu
)
= −

(
ω,A−1

1 ∇hu
)

,(
A−1

2 ∆xω, u
)
=
(

∆xA−1
2 ω, u

)
= −

(
∇+A−1

2 ω,∇+u
)
= −

(
A−1

2 ∇+ω,∇+u
)

.
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Lemma 5. Let u, v ∈ Uh, we arrive at
〈

ϕ(u, v) , u
〉
= 0.

Proof. For u, v ∈ Uh, using Lemmas 1 and 4, we can obtain the following:

〈
ϕ(u, v) , u

〉
=
〈

vjA−1
1 ∇huj +A−1

1 ∇h(vjuj) , uj

〉

=
〈

vjA−1
1 ∇huj , uj

〉
+
〈
A−1

1 ∇h(vjuj) , uj

〉
,

=
〈
A−1

1 ∇huj , vjuj

〉
−
〈

vjuj , A−1
1 ∇huj

〉
,

= 0.

Lemma 6 ([43]). For real symmetric positive-definite matrices A−1
1 , A−1

2 , and ω ∈ Uh, we obtain

the following:

‖ω‖2 ≤
(
A−1

1 ω, ω
)
= ‖V1ω‖2 ≤ 3‖ω‖2, ‖ω‖2 ≤

(
A−1

2 ω, ω
)
= ‖V2ω‖2 ≤ 3

2‖ω‖2.

2.2. Properties of the Fast Alikhanov Scheme

In order to construct the fast Alikhanov scheme, we first consider the time levels
0 = t0 < t1 < t2 < · · · < tN = T, where N is a given positive integer. We define the nth
step size τn := tn − tn−1 for 1 ≤ n ≤ N, the maximum step size τ := max

0≤n≤N
τn. We set the

time level tn−θ := θtn−1 + (1 − θ)tn with a fixed parameter θ = α/2. It is necessary to set
the local step-size ratios:

ρn :=
τn

τn+1
for 1 ≤ n ≤ N − 1 and ρ := max

1≤n≤N−1
ρn.

For any time sequence (vn)N
n=0, we define ∇τvn := vn − vn−1 and the interpolated

value vn−θ := θvn−1 + (1 − θ)vn. Thus, it is advisable to denote Π1,ku as the linear in-
terpolant function of a function, u, with respect to tk−1, tk, and to denote the quadratic
interpolant of u with respect to tk−1, tk and tk+1 as Π2,ku, respectively. Recalling the defini-
tion of ∇τuk, it follows that for k ≥ 1, we have the following:

(Π1,ku)′(t) =
∇τuk

τk
,

(Π2,ku)′(t) =
∇τuk

τk
+

2(t − tk−1/2)

τk(τk + τk+1)

(
ρk∇τuk+1 −∇τuk

)
.

Next, the Caputo fractional derivative can be approximated by the defined interpolant
polynomial at tn−θ to obtain the Alikhanov approximation:

(Dα
τu)n−θ :=

∫ tn−θ

tn−1

ω1−α(tn−θ − s)(Π1,nu)′(s)ds +
n−1

∑
k=1

∫ tk

tk−1

ω1−α(tn−θ − s)(Π2,ku)′(s)ds

= a
(n)
0 ∇τun +

n−1

∑
k=1

(
a
(n)
n−k∇τuk + ρkb

(n)
n−k∇τuk+1 − b

(n)
n−k∇τuk

)
,

=
n

∑
k=1

A
(α,n)
n−k ∇τvk,

(12)

we have A
(1)
0 := a

(1)
0 if n = 1, and for n ≥ 2,
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A
(n)
n−k :=

⎧
⎪⎪⎨
⎪⎪⎩

a
(n)
0 + ρn−1b

(n)
1 , k = n,

a
(n)
n−k + ρk−1b

(n)
n−k+1 − b

(n)
n−k, 2 ≤ k ≤ n − 1,

a
(n)
n−1 − b

(n)
n−1, k = 1.

(13)

Here, A
(n)
n−k is the discrete convolution kernel of the Alikhanov formula; next, the SOE

technique is applied to derive the discrete convolution kernel of the fast Alikhanov formula.

Lemma 7 ([27]). (SOE) Let α ∈ (0, 1), ǫ ≪ 1, and ∆t > 0. Assume there exists a positive integer

Nq, and positive quadrature nodes sl and ̟l > 0 (1 ≤ l ≤ Nq), such that we have the following:

∣∣∣∣∣ω1−α(t)−
Nq

∑
l=1

̟le−sl t

∣∣∣∣∣ ≤ ǫ, t ∈ [∆t, T],

and the quadrature node number Nq satisfies

Nq = O

(
log

1
ǫ

(
log log

1
ǫ
+ log

T

∆t

)
+ log

1
∆t

(
log log

1
ǫ
+ log

1
∆t

))
.

Now, the fractional derivative can be approximated in combination with the SOE
technique in Lemma 7 at the time point tn−θ for 1 ≤ n ≤ N

C
0 Dα

f u(tn−θ) ≈
∫ tn−θ

tn−1

ω1−α(tn−θ − s)(Π1,nu)′(s)ds +
n−1

∑
k=1

∫ tk

tk−1

Nq

∑
l=1

̟le−sl(tn−θ−s)u′(s)ds

= â
(n)
0 ∇τun +

n−1

∑
k=1

(
â
(n)
n−k∇τuk + ρkb̂

(n)
n−k∇τuk+1 − b̂

(n)
n−k∇τuk

)

=
n

∑
k=1

Â
(n)
n−k∇τuk,

(14)

where coefficients â
(n)
n−k and b̂

(n)
n−k are defined by the following:

â
(n)
0 := a

(n)
0 , â

(n)
n−k :=

1
τk

∫ tk

tk−1

Nq

∑
l=1

̟le−sl(tn−θ−s)ds, 1 ≤ k ≤ n − 1,

b̂
(n)
n−k :=

2
τk(τk + τk+1)

∫ tk

tk−1

Nq

∑
l=1

̟le−sl(tn−θ−s)e−sl(tk+1−θ−s)(s − tk− 1
2
)ds, 1 ≤ k ≤ n − 1.

We reformulate the discrete convolution kernel Â
(n)
n−k as follows: Â

(1)
0 := a

(1)
0 if n = 1

and for n ≥ 2

Â
(n)
n−k :=

⎧
⎪⎪⎨
⎪⎪⎩

â
(n)
0 + ρn−1b̂

(n)
1 , for k = n,

â
(n)
n−k + ρk−1b̂

(n)
n−k+1 − b̂

(n)
n−k, for 2 ≤ k ≤ n − 1,

â
(n)
n−1 − b̂

(n)
n−1, for k = 1.

(15)

In order to effectively assess some necessary properties of the discrete convolution

kernel Â
(n)
n−k, the time step needs to satisfy the following two conditions:

M1. The maximum time-step ratio is ρ = 7/4.

M2. There exists a positive constant Cγ, such that τk ≤ Cγτ min{1, t
1−1/γ
k } for 1 ≤ k ≤ N,

with tk ≤ Cγtk−1 and τk/tk ≤ Cγτk−1/tk−1 for 2 ≤ k ≤ N.
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Lemma 8 ([27]). Assume that the tolerance error ǫ of the SOE approximation satisfies

ǫ ≤ min
{

αp

2(1 − αp)
ω1−αp(T),

1
26

ω1−αp(T)

}
,

then the discrete kernel Â
(n)
n−k satisfies the following:

(I) Â
(n)
n−k are bounded, Â

(n)
n−k ≤ 2

τn
ω2−αp(τn) and

Â
(n)
n−k ≥

1
2τk

∫ tk

tk−1

ω1−α(tn − s)ds, 1 ≤ k ≤ n;

(II) Â
(n)
n−k are monotone, and

Â
(n)
n−k−1 − Â

(n)
n−k ≥ (1 + ρk)

(
1

5ρk
+ 1

)
b
(n)
n−k, 1 ≤ k ≤ n − 1;

(III) Â
(n)
0 − Â

(n)
1 > θ

(
2Â

(n)
0 − Â

(n)
1

)
for n ≥ 2.

In this case, for the later analysis of global consistency, we introduce the complemen-

tary discrete convolution kernels P
(n)
n−k of Â

(n)
n−k that satisfy

n

∑
i=k

P
(n)
n−iÂ

(i)
i−k ≡ 1. (16)

which yields the following recursive formulas:

P
(n)
0 :=

1

Â
(n)
0

, P
(n)
i :=

1

Â
(i)
0

n

∑
k=i+1

(
Â

(k)
k−i−1 − Â

(k)
k−i

)
P
(n)
k , 1 ≤ i ≤ n − 1.

In fact, according to Lemma 8, the complementary discrete kernels are non-negative
and satisfy the following:

n

∑
i=1

P
(n)
n−iω1+(m−1)α(ti) ≤ πAω1+mα(tn), m = 0, 1, 1 ≤ n ≤ N. (17)

Lemma 9 ([44]). Let λs be nonnegative constants with 0 < ∑
n
s=0 λs ≤ Λ for n ≥ 1, where Λ is

some positive constant independent of n. Suppose that the nonnegative sequences ξn and ηn are

bounded, and the nonnegative grid function {vn | n ≥ 0} satisfies the following:

n

∑
k=1

A
(n)
n−k∇τ(v

k)2 ≤
n

∑
s=1

λn−s(v
s,θ1)2 + ξnvn,θ2 + (ηn)2, n ≥ 1, (18)

where for i = 1, 2 and each n, we set vn,θ1 := θiv
n−1 + (1 − θi)v

n for some constant θi ∈ [0, 1]. If

the nonuniform grid satisfies the maximum time-step criterion τN ≤ [ 11
2 Γ(2 − α)Λ]−1/α, then we

have the following:

vn ≤ 2Eα(
11
2

Λtα
n)

[
v0 + max

1≤k≤n

k

∑
j=1

P
(k)
k−j(ξ

j + η j) + max
1≤j≤n

η j

]
, 1 ≤ n ≤ N,

where Eα(z) :=
∞

∑
k=0

zk/Γ(1 + kα), and Eα(·) represents the Mittag–Leffler function.
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Lemma 10 ([45]). Under the condition M1 and Lemma 8, the fast Alikhanov Formula (14) satisfies

the following:

〈
(Dα

τv)n−θ , vn−θ
〉
≥ 1

2

n

∑
k=1

A
(n)
n−k∇τ(‖vk‖2), 1 ≤ n ≤ N.

3. Establishment and Analysis of Compact Scheme

In this section, we shall derive the second-order fast compact difference scheme for
problems (1)–(3). After that, the convergence and stability of the fast compact difference
algorithm are rigorously proved.

3.1. Numerical Scheme

First, combined with (11), the temporal direction of Equation (1) at the grid points
(xj, tn−θ) is discretized by the fast nonuniform Alikhanov Formula (14) and the spatial di-
rection is discretized by the compact difference Formula (9), where we obtain the following:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
Dα

f Uj

)n−θ
+

1
p + 2

ϕ(Vn−θ
j , Un−θ

j )− μA−1
2 ∆xUn−θ

j +A−1
2 ∆xWn−θ

j = f n−θ
j + Λn−θ

j ,

1 ≤ j ≤ M − 1, 1 ≤ n ≤ N,

Vn
j =

(
Un

j

)p
, 0 ≤ j ≤ M, 0 ≤ n ≤ N,

Wn−θ
j = ∆xUn−θ

j + Rn−θ
3 , 0 ≤ j ≤ M, 0 ≤ n ≤ N,

(19)

(20)

(21)

where Λn−θ
j and Rn−θ

3 denote the truncation errors.

Omitting the small terms Λn−θ
j and Rn−θ

3 in (19), we replace the functions Un
j , Wn

j ,
and Vn

j with their numerical approximations un
j , ωn

j , and vn
j , respectively. Meanwhile,

combining IC (2) and BC (3), we can obtain the fully discrete difference scheme:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
Dα

f uj

)n−θ
+

1
p + 2

ϕ(vn−θ
j , un−θ

j )− μA−1
2 ∆xun−θ

j +A−1
2 ∆xωn−θ

j = f n−θ
j ,

1 ≤ j ≤ M − 1, 1 ≤ n ≤ N,

vn
j =

(
un

j

)p
, 0 ≤ j ≤ M, 0 ≤ n ≤ N,

ωn−θ
j = ∆xun−θ

j , 0 ≤ j ≤ M, 0 ≤ n ≤ N,

u0
j = u0(xj), 1 ≤ j ≤ M − 1,

un
0 = un

M = ωn
0 = ωn

M = 0, 0 ≤ n ≤ N.

(22)

(23)

(24)

(25)

(26)

In what follows, the stability and convergence analysis of the above fully discrete
schemes (22)–(26) are carried out by the energy method.

3.2. Stability

Here, we present the stability result as follows:

Theorem 1. Suppose that {un}N
n=0 is the solution to (22)–(26), and under the conditions of

Lemma 8 and M2, then we have the following:

‖un‖ ≤ ‖u0‖+
11
2

Γ(1 − α) max
1≤k≤n

tα
k‖ f k−θ‖.
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Proof. Taking an inner product of (22) with un−θ , we obtain the following:

〈(
Dα

f u
)n−θ

, un−θ

〉
+

1
p + 2

〈
ϕ(vn−θ , un−θ), un−θ

〉
− μ

〈
A−1

2 ∆xun−θ , un−θ
〉
+
〈
A−1

2 ∆xωn−θ , un−θ
〉

=
〈

f n−θ , un−θ
〉

. (27)

By Lemmas 5 and 10, we have the following:

〈(
Dα

f u
)n−θ

, un−θ

〉
≥ 1

2

n

∑
k=1

A
(n)
n−k∇τ(‖uk‖2), (28)

1
p + 2

〈
ϕ(vn−θ , un−θ), un−θ

〉
= 0, (29)

and
−μ

〈
A−1

2 ∆xun−θ , un−θ
〉
= μ

〈
A−1

2 ∇+un−θ ,∇+un−θ
〉
≥ μ | un−θ |21, (30)

〈
A−1

2 ∆xωn−θ , un−θ
〉
=
〈
A−1

2 ωn−θ , ∆xun−θ
〉
=
〈
A−1

2 ωn−θ , ωn−θ
〉
≥ 0. (31)

Under the relations (28)–(31), we have the following:

n

∑
k=1

A
(n)
n−k∇τ(‖uk‖2) ≤ 2‖ f n−θ‖‖un−θ‖.

Taking λs = 0 for s ≥ 0, ηn = 0 and ξn = 2‖ f n−θ‖ for n ≥ 1 in Lemma 9 and πA = 11
4

in Lemma 8, it is easy to obtain

‖un‖ ≤ ‖u0‖+ max
1≤k≤n

k

∑
i=1

2P
(k)
k−i‖ f k−θ‖ ≤ ‖u0‖+ 2πAΓ(1 − α) max

1≤k≤n
tα
k‖ f k−θ‖.

Consequently, we infer the following:

‖un‖ ≤ ‖u0‖+
11
2

Γ(1 − α) max
1≤k≤n

tα
k‖ f k−θ‖.

3.3. Convergence

Before analyzing the convergence of the fast Alikhanov schemes (22)–(26), we first
analyze the truncation errors Λn−θ

j and (R3)
n−θ
j . In fact, Λn−θ

j is composed of the following
four parts:

Λn−θ
j := (Rt1)

n−θ
j + (Rt2)

n−θ
j + (R3)

n−θ
j + (Rs)

n−θ
j , 1 ≤ j ≤ M − 1, 1 ≤ n ≤ N,

where (Rs)
n−θ
j means that the error is caused by approximating space derivatives; it can

easily be seen that (Rs)
n−θ
j = O(h4) from (9) and (11). Moreover, we have the following:
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(Rt1)
n−θ
j :=

(
Dα

f uj

)n−θ
− C

0 Dα
t u(xj, tn−θ),

(Rt2)
n−θ
j := − 1

p + 2
ϕ((Rv)

n−θ
j , (Ru)

n−θ
j ) + μA−1

2 ∆x(Ru)
n−θ
j −A−1

2 ∆x(Rω)
n−θ
j ,

where (Ru)
n−θ
j , (Rv)

n−θ
j and (Rω)

n−θ
j denote the errors of the weighted time approximation

at tn−θ , namely, we have the following:

(Ru)
n−θ
j := u(xj, tn−θ)− [θUn−1

j + (1 − θ)Un
j ],

(Rv)
n−θ
j := v(xj, tn−θ)− [θVn−1

j + (1 − θ)Vn
j ],

(Rω)
n−θ
j := ω(xj, tn−θ)− [θWn−1

j + (1 − θ)Wn
j ].

Based on the mesh condition M1 and the regularity (7), and consulting Lemma 3.3
and Lemma 3.4 in [25,27], we arrive at the following:

n

∑
k=1

P
(n)
n−k

∣∣∣(Rt1)
k−θ
j

∣∣∣ ≤ C

(
τσ

1
σ

+
ǫ

σ
tα
n t̂2

n−1 +
1

1 − α
max

2≤k≤n
tα
k tσ−3

k−1 τ3
k /τα

k−1

)
, 1 ≤ n ≤ N, (32)

n

∑
k=1

P
(n)
n−k

∣∣∣(Ru)
k−θ
j

∣∣∣ ≤ C

(
τσ+α

1
σ

+ tα
n max

2≤k≤n
tσ−2
k−1 τ2

k

)
, 1 ≤ n ≤ N, (33)

where t̂n = max{1, tn}.
Combining (17) and (Rs)

n−θ
j = O(h4), we can also obtain the following:

max
1≤k≤n

k

∑
i=1

P
(k)
k−i|(Rs)

i−θ
j | ≤ Ch4, 1 ≤ n ≤ N. (34)

Therefore, combining (20)–(22), the following holds:

max
1≤k≤n

k

∑
i=1

P
(k)
k−i‖Λi−θ‖ ≤ C

(
τσ

1
σ

+
ǫ

σ
tα
n t̂2

n−1 + max
2≤i≤k

tα
i tσ−3

i−1 τ3
i /τα

i−1 + tα
k max

2≤i≤k
tσ−2
i−1 τ2

i + h4
)

, 1 ≤ n ≤ N. (35)

To obtain a pointwise error estimate of (22)–(26), we need to apply an important
method, namely, the truncated function method. Based on the regularity assumption (8),
we denote
Q := max

(x,t)∈[0,L]×[0,T]
|u(x, t)|. We can find a second-order smooth function as follows:

g(u) :=

⎧
⎨
⎩

up, |u| ≤ Q + 1,

0, |u| ≥ Q + 2.

Furthermore, let c1 := max
u∈R

|g(u)|, c2 := max
u∈R

|g′(u)|. It is not difficult to verify that

the constants c1 and c2 depend only on Q and p by the Hermite polynomial interpolant.
Clearly, (20) and (23) are equivalent to the following:
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⎧
⎨
⎩

Vn
j = g(Un

j ), 0 ≤ j ≤ M, 0 ≤ n ≤ N,

vn
j = g(un

j ), 0 ≤ j ≤ M, 0 ≤ n ≤ N.

(36)

(37)

The convergence of the full discrete schemes (22)–(26) is studied below. Subtracting
(19)–(21) from (22)–(24), respectively, the error equation can be written as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
Dα

t ej

)n−θ
+

1
p + 2

[
ϕ(Vn−θ

j , Un−θ
j )− ϕ(vn−θ

j , un−θ
j )

]
− μA−1

2 ∆xen−θ
j +A−1

2 ∆xηn−θ
j = Λn−θ

j ,

1 ≤ j ≤ M − 1, 1 ≤ n ≤ N,

ρn−θ
j = g(Un−θ

j )− g(un−θ
j ), 0 ≤ j ≤ M, 0 ≤ n ≤ N,

ηn−θ
j = A−1

2 ∆xen−θ
j + (R3)

n−θ
j , 0 ≤ j ≤ M, 0 ≤ n ≤ N,

e0
j = 0, 1 ≤ j ≤ M − 1,

en
0 = en

M = ηn
0 = ηn

M = 0, 0 ≤ n ≤ N,

(38)

(39)

(40)

(41)

(42)

where en
j := Un

j − un
j , ̺n

j := Vn
j − vn

j , ηn
j := Wn

j − ωn
j .

Theorem 2. Suppose that the exact solution, u, satisfies the regularity property in (7) and (8) with

the parameter σ ∈ (0, 1) ∪ (1, 2). Let M1, M2 hold, and t̂n = max{1, tn} for 1 ≤ n ≤ N. If

τ ≤ ((11/2)Γ(2 − α)c3)
−1/α, the following estimate holds:

‖en‖ ≤ C(τmin{γσ,2} + h4 + ǫ), 0 ≤ n ≤ N. (43)

Proof. Firstly, according to the differential mean value theorem, from (39), it is clear that

|̺n
j | ≤ c2|en

j |, 0 ≤ j ≤ M, 0 ≤ n ≤ N,

moreover, we obtain the following:

‖̺n‖ ≤ c2‖en‖, 0 ≤ n ≤ N. (44)

The next thing to do in the proof is to take an inner product of (38) with en−θ; we obtain
the following:〈

(Dα
t e)n−θ , en−θ

〉
+

1
p + 2

〈
ϕ(Vn−θ , Un−θ)− ϕ(vn−θ , un−θ), en−θ

〉

− μ
〈
A−1

2 ∆xen−θ , en−θ
〉
+
〈
A−1

2 ∆xηn−θ , en−θ
〉
=
〈

Λn−θ , en−θ
〉

.
(45)

Furthermore, taking an inner product of (40) with ηn−θ , we obtain the following:
〈

ηn−θ , ηn−θ
〉
=
〈
A−1

2 ∆xen−θ , ηn−θ
〉
+
〈

Rn−θ
3 , ηn−θ

〉
. (46)

Another step is to analyze the above equation term by term. Using Lemma 10, we have
the following:

〈
(Dα

t e)n−θ , en−θ
〉
≥ 1

2

n

∑
k=1

A
(n)
n−k∇τ(‖ek‖2). (47)
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By the regularity assumption (7), let c0 := max
(x,t)∈[0,L]×[0,T]

{|u(x, t)|, |ux(x, t)|}. Apply-

ing Lemmas 2–6 and the Cauchy–Schwarz inequality, and noting that vn−θ = Vn−θ − ̺n−θ

and un−θ = Un−θ − en−θ , we have the following:

〈
ϕ(Vn−θ , Un−θ)− ϕ(vn−θ , un−θ), en−θ

〉

=
〈

ϕ(̺n−θ , Un−θ) + ϕ(Vn−θ , en−θ)− ϕ(̺n−θ , en−θ), en−θ
〉

=
〈

ϕ(̺n−θ , Un−θ), en−θ
〉

=
〈

̺n−θA−1
1 ∇hUn−θ +A−1

1 ∇h(̺
n−θUn−θ), en−θ

〉

=
(

̺n−θA−1
1 ∇hUn−θ , en−θ

)
+
(
A−1

1 ∇h(̺
n−θUn−θ), en−θ

)

=
(
∇hUn−θ ,A−1

1

(
̺n−θen−θ

))
−
(

̺n−θUn−θ ,A−1
1 ∇hen−θ

)

≤‖V1∇hUn−θ‖‖V1

(
̺n−θen−θ

)
‖+ ‖V1

(
̺n−θUn−θ

)
‖‖V1∇hen−θ‖

≤3Lc0‖̺n−θen−θ‖+ 3c0|en−θ |1‖̺n−θ‖
≤3Lc0‖̺n−θ‖‖en−θ‖∞ + 3c0c2|en−θ |1‖en−θ‖

≤3Lc0c2‖en−θ‖
√

L

2
|en−θ |1 + 3c0c2|en−θ |1‖en−θ‖

≤3c0c2(L3/2 + 1)‖en−θ‖|en−θ |1

≤9c2
0c2

1(L3/2 + 1)2

4μ
‖en−θ‖2 + μ|en−θ |21,

(48)

as well as

−μ
〈
A−1

2 ∆xen−θ , en−θ
〉
= μ

〈
A−1

2 ∇+en−θ ,∇+en−θ
〉
≥ μ|en−θ |21, (49)

〈
Λn−θ , en−θ

〉
≤ ‖Λn−θ‖‖en−θ‖. (50)

Substituting the results of (47)–(49) into (34), and adding (46), we have the following:

1
2

n

∑
k=1

A
(n)
n−k∇τ(‖ek‖2) +

〈
ηn−θ , ηn−θ

〉
≤ 9c2

0c2
1(L3/2 + 1)2

4μ
‖en−θ‖2 + ‖Λn−θ‖‖en−θ‖+

〈
Rn−θ

3 , ηn−θ
〉

.

n

∑
k=1

A
(n)
n−k∇τ(‖ek‖2) ≤ 9c2

0c2
1(L3/2 + 1)2

2μ
‖en−θ‖2 + 2‖Λn−θ‖‖en−θ‖+ 1

2
‖Rn−θ

3 ‖2.

According to Lemma 9, λ0 =
9c2

0c2
1(L3/2+1)2

2μ < c3, ξn = 2‖Λn−θ‖, ηn =
√

2
2 ‖Rn−θ

3 ‖, we
can obtain the following:

‖en‖ ≤ 2Eα(
11
2

c3tα
n)

[
‖e0‖+ max

1≤k≤n

k

∑
j=1

P
(k)
k−j(2‖Λj−θ‖+

√
2

2
‖R

j−θ
3 ‖) +

√
2

2
max

1≤j≤n
R

j
3

]
, 1 ≤ n ≤ N. (51)

Due to ‖e0‖ = 0, 2Eα(
11
2 c3tα

n) ≤ C, and combing (35), we have the following:

‖en‖ ≤ C

(
τσ

1
σ

+
ǫ

σ
tα
n t̂2

n−1 + max
2≤i≤k

tα
i tσ−3

i−1 τ3
i /τα

i−1 + tα
k max

2≤i≤k
tσ−2
i−1 τ2

i + h4
)

. (52)
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On the other hand, if M1 and M2 hold, β = min{2, γσ}, we have the following:

tα
k tσ−3

k−1 τ3
k τ−α

k−1 ≤ Cγtα+σ−3
k τ3−α

k

≤ Cγtα+σ−3
k τ

3−α−β
k

(
τ min

{
1, t

1−1/γ
k

})β

≤ Cγt
σ−β/γ
k (τk/tk)

3−α−βτβ

≤ Cγt
max{0,σ−(3−α)/γ}
k τβ for 2 ≤ k ≤ n,

(53)

tσ−2
k−1 τ2

k ≤ Cγtσ−2
k τ

2−β
k

(
τ min

{
1, t

1−1/γ
k

})β

≤ Cγt
σ−β/γ
k (τk/tk)

2−βτβ

≤ Cγt
max{0,σ−2/γ}
k τβ, for 2 ≤ k ≤ n.

(54)

As a result, the discrete solution un−θ
j is convergent in the sense that

‖en‖ ≤ C(τmin{γσ,2} + h4 + ǫ), 0 ≤ n ≤ N. (55)

This finishes the proof.

4. Numerical Experiment

In this section, we test the stability and convergence of the fast compact schemes (22)–(26)
for three different experiments on a nonuniform grid {tn = T(n/N)γ, n = 1, . . . , N}. All
experiments were performed on a Windows server with an AMD Ryzen 5 4600H processor
of 16GB RAM and 3.00 GHz CPU. In the following experiments, the tolerance accuracy of
the SOE algorithm is limited to ǫ = 10−12 in order to balance accuracy and efficiency [6].
The following suitable formulas are given to calculate the error and convergence order of the
following numerical solution:

ESOE(M, N) =
∥∥∥UN − uN

∥∥∥
2
=

√√√√h
M−1

∑
j=1

(UN
j − uN

j )
2,

RateSOE
h = log2

(
ESOE(M, N)

ESOE(2M, N)

)
, RateSOE

τ = log2

(
ESOE(M, N)

ESOE(M, 2N)

)
,

where UN and uN represent the exact and numerical solutions at the Nth time level, respectively.
In addition, we define the following notation to illustrate the numerical implementa-

tion of the proposed scheme:
U∗ = max

1≤n≤N
‖Un‖.

Before proceeding further, let us remark on the numerical scheme setting of the fast
Alikhanov approach and Alikhanov approach.

• Alikhanov scheme: The Caputo fractional derivative discretization scheme is (12).
• Fast Alikhanov scheme: The Caputo fractional derivative discretization scheme is (14).

Example 1. In this example, we consider the following problem:⎧
⎪⎪⎨
⎪⎪⎩

C
0 Dα

t u + upux − μuxx + uxxxx = f (x, t), 0 < x < 1, 0 ≤ t ≤ 1,

u(x, 0) = u0(x), 0 < x < 1,

uxx(0, t) = uxx(1, t), 0 ≤ t ≤ 1,

(56)

(57)

(58)

and the exact solution is set as u(x, t) =
(

1 + tα

Γ(1+α)

)
sin(πx). Accordingly, the initial condition

u0 = sin(πx) and the source term f (x, t) are as follows:
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f (x, t) = sin(πx)

(
1 + μπ2 + μπ2 tα

Γ(1 + α)
+ π4 + π4 tα

Γ(1 + α)

)
+ π

(
1 +

tα

Γ(1 + α)

)p+1

(sin(πx))p+1 cos(πx).

For Example 1, in Table 1, we fix M = 256, μ = 1, and γ = 2/α to explore the
performances of the fast Alikhanov and Alikhanov schemes in terms of errors in the L2-
norm and the convergence order for different α and p cases. It can be found that the errors
in the L2-norm of the Alikhanov and fast Alikhanov schemes are very close and both of
them can reach second-order convergence in the temporal direction with α ∈ {0.3, 0.5, 0.7}
and p ∈ {2, 3, 4}. When p ∈ {2, 3, 4}, the value of α keeps on changing, the errors in
Alikhanov and fast Alikhanov schemes have the same effect and also achieve second-order
convergence. Table 2 shows the errors and convergence orders in the spatial direction
for different μ and p when fixing N = 512, α = 0.5, and γ = 4. It can be observed that
regardless of whether μ changes or p changes, the spatial errors in the L2-norm of the two
schemes are similar and both can achieve fourth-order convergence in agreement with the
theoretical prediction.

Table 3 considers the cases where N = 512, p = 2, μ = 1, and γ = 2 are fixed, with
α changing, which indicates that the fast Alikhanov and Alikhanov schemes can achieve
similar spatial errors and fourth-order convergence. The CPU times of the two algorithms
are given; it is obvious that the fast Alikhanov scheme is much faster than the Alikhanov
scheme. In order to further confirm whether the temporal and spatial convergence orders
of the fast Alikhanov scheme remain stable as p increases, the temporal convergence and
spatial convergence orders are shown in Figures 1 and 2. Table 4 shows that with the
gradual increase in N, the value of U∗ tends to stabilize and shows no increasing trend.
These results confirm the numerical stability of the proposed scheme in the time direction.
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Figure 1. The temporal convergence orders of the fast compact difference scheme when α = 0.5,
μ = 1, γ = 4 and N = 256.
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Table 1. Temporal error and convergence order of Example 1 for different α and p with M = 256,
μ = 1, γ = 2/α.

N ESOE(M, N) RateSOE
τ ESOE(M, N) RateSOE

τ ESOE(M, N) RateSOE
τ

Alikhanov p = 2 p = 3 p = 4

8 2.6080 × 10−5 - 4.2294 × 10−5 - 8.0635 × 10−5 -
16 6.2591 × 10−6 2.0589 1.1197 × 10−5 1.9173 2.2588 × 10−5 1.8358
32 1.4056 × 10−6 2.1548 2.8265 × 10−6 1.9861 5.9572 × 10−6 1.9228
64 3.2266 × 10−7 2.1230 7.0951 × 10−7 1.9941 1.5306 × 10−6 1.9605

α = 0.3 Fast Alikhanov p = 2 p = 3 p = 4

8 2.6081 × 10−5 - 4.2298 × 10−5 - 8.0632 × 10−5 -
16 6.2657 × 10−6 2.0575 1.1195 × 10−5 1.9177 2.2588 × 10−5 1.8358
32 1.4042 × 10−6 2.1578 2.8276 × 10−6 1.9852 5.9571 × 10−6 1.9229
64 3.2485 × 10−7 2.1119 7.0925 × 10−7 1.9952 1.5302 × 10−6 1.9609

Alikhanov p = 2 p = 3 p = 4

8 2.9692 × 10−5 - 6.1797 × 10−5 - 1.2884 × 10−4 -
16 7.5590 × 10−6 1.9738 1.6557 × 10−5 1.9001 3.5529 × 10−5 1.8585
32 1.8727 × 10−6 2.0131 4.2675 × 10−6 1.9560 9.2949 × 10−6 1.9345
64 4.8342 × 10−7 1.9537 1.0864 × 10−6 1.9739 2.3738 × 10−6 1.9693

α = 0.5 Fast Alikhanov p = 2 p = 3 p = 4

8 2.9697 × 10−5 - 6.1799 × 10−5 - 1.2884 × 10−4 -
16 7.5559 × 10−6 1.9746 1.6555 × 10−5 1.9003 3.5529 × 10−5 1.8585
32 1.8753 × 10−6 2.0105 4.2675 × 10−6 1.9558 9.2949 × 10−6 1.9345
64 4.8013 × 10−7 1.9657 1.0853 × 10−6 1.9752 2.3737 × 10−6 1.9693

Alikhanov p = 2 p = 3 p = 4

8 3.2325 × 10−5 - 7.1925 × 10−5 - 1.5150 × 10−4 -
16 8.3560 × 10−6 1.9517 1.8960 × 10−5 1.9235 4.0683 × 10−5 1.8968
32 2.1056 × 10−6 1.9886 4.8485 × 10−6 1.9674 1.0492 × 10−5 1.9552
64 5.3111 × 10−7 1.9872 1.2273 × 10−6 1.9820 2.6629 × 10−6 1.9782

α = 0.7 Fast Alikhanov p = 2 p = 3 p = 4

8 3.2332 × 10−5 - 7.1927 × 10−5 - 1.5149 × 10−4 -
16 8.3605 × 10−6 1.9513 1.8961 × 10−5 1.9235 4.0681 × 10−5 1.8968
32 2.1158 × 10−6 1.9824 4.8494 × 10−6 1.9672 1.0485 × 10−5 1.9560
64 5.2915 × 10−7 1.9995 1.2265 × 10−6 1.9833 2.6618 × 10−6 1.9779
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Figure 2. The spatial convergence orders of the fast compact difference scheme when α = 0.5, μ = 1,
γ = 4 and N = 512.
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Table 2. Space error and convergence order of Example 1 for different μ and p with N = 512, α = 0.5,
γ = 4.

M ESOE(M, N) RateSOE
h ESOE(M, N) RateSOE

h ESOE(M, N) RateSOE
h

Alikhanov p = 2 p = 3 p = 4

4 4.8317 × 10−3 - 4.8272 × 10−3 - 4.9532 × 10−3 -
8 2.9702 × 10−4 4.0239 2.9925 × 10−4 4.0118 3.0394 × 10−4 4.0265
16 1.8486 × 10−5 4.0060 1.8543 × 10−5 4.0124 1.8659 × 10−5 4.0258
32 1.1542 × 10−6 4.0015 1.1572 × 10−6 4.0021 1.1689 × 10−6 3.9966

μ = 0.1 Fast Alikhanov p = 2 p = 3 p = 4

4 4.8317 × 10−3 - 4.8272 × 10−3 - 4.9532 × 10−3 -
8 2.9702 × 10−4 4.0239 2.9925 × 10−4 4.0118 3.0394 × 10−4 4.0265
16 1.8486 × 10−5 4.0060 1.8543 × 10−5 4.0124 1.8659 × 10−5 4.0258
32 1.1542 × 10−6 4.0015 1.1572 × 10−6 4.0021 1.1689 × 10−6 3.9966

Alikhanov p = 2 p = 3 p = 4

4 4.6355 × 10−3 - 4.6325 × 10−3 - 4.7695 × 10−3 -
8 2.8495 × 10−4 4.0239 2.8705 × 10−4 4.0124 2.9150 × 10−4 4.0323
16 1.7735 × 10−5 4.0060 1.7788 × 10−5 4.0123 1.7899 × 10−5 4.0256
32 1.1073 × 10−6 4.0015 1.1102 × 10−6 4.0021 1.1212 × 10−6 3.9967

μ = 1 Fast Alikhanov p = 2 p = 3 p = 4

4 4.6355 × 10−3 - 4.6325 × 10−3 - 4.7695 × 10−3 -
8 2.8495 × 10−4 4.0239 2.8705 × 10−4 4.0124 2.9150 × 10−4 4.0323
16 1.7735 × 10−5 4.0060 1.7788 × 10−5 4.0123 1.7899 × 10−5 4.0256
32 1.1073 × 10−6 4.0015 1.1102 × 10−6 4.0021 1.1212 × 10−6 3.9967

Alikhanov p = 2 p = 3 p = 4

4 3.6473 × 10−3 - 3.6500 × 10−3 - 3.8049 × 10−3 -
8 2.2412 × 10−4 4.0245 2.2550 × 10−4 4.0167 2.2849 × 10−4 4.0576
16 1.3948 × 10−5 4.0062 1.3981 × 10−5 4.0116 1.4058 × 10−5 4.0227
32 8.7088 × 10−7 4.0014 8.7269 × 10−7 4.0019 8.8006 × 10−7 3.9976

μ = 10 Fast Alikhanov p = 2 p = 3 p = 4

4 3.6473 × 10−3 - 3.6500 × 10−3 - 3.8049 × 10−3 -
8 2.2412 × 10−4 4.0245 2.2550 × 10−4 4.0167 2.2849 × 10−4 4.0576
16 1.3948 × 10−5 4.0062 1.3981 × 10−5 4.0116 1.4058 × 10−5 4.0227
32 8.7088 × 10−7 4.0014 8.7269 × 10−7 4.0019 8.8006 × 10−7 3.9976

Table 3. Errors, convergence orders in space, and CPU times for the Alikhanov scheme and fast
Alikhanov scheme by fixing N = 512, p = 2, μ = 1, and γ = 2 for Example 1.

α = 0.3 α = 0.5 α = 0.7

Alikhanov M ESOE(M, N) RateSOE
h ESOE(M, N) RateSOE

h ESOE(M, N) RateSOE
h

4 4.6004 × 10−3 - 4.6355 × 10−3 - 4.5792 × 10−3 -
8 2.8278 × 10−4 4.0240 2.8495 × 10−4 4.0239 2.8149 × 10−4 4.0240

16 1.7600 × 10−5 4.0061 1.7735 × 10−5 4.0060 1.7555 × 10−5 4.0031
32 1.0988 × 10−6 4.0016 1.1073 × 10−6 4.0015 1.1327 × 10−6 3.9541

CPU(s) 82.777 75.941 82.308

α = 0.3 α = 0.5 α = 0.7

Fast Alikhanov M ESOE(M, N) RateSOE
h ESOE(M, N) RateSOE

h ESOE(M, N) RateSOE
h

4 4.6004 × 10−3 - 4.6355 × 10−3 - 4.5792 × 10−3 -
8 2.8278 × 10−4 4.0240 2.8495 × 10−4 4.0239 2.8145 × 10−4 4.0241

16 1.7600 × 10−5 4.0060 1.7735 × 10−5 4.0060 1.7517 × 10−5 4.0061
32 1.0997 × 10−6 4.0005 1.1073 × 10−6 4.0015 1.0939 × 10−6 4.0011

CPU(s) 3.9295 3.8685 3.9980

178



Fractal Fract. 2025, 9, 218

Table 4. Numerical solutions when M = 256, p = 2, μ = 1, and γ = 2/α for Example 1.

α = 0.3 α = 0.5 α = 0.7

N U* U* U*

4 1.4949 1.5049 1.4853
8 1.4950 1.5050 1.4853
16 1.4950 1.5050 1.4853
32 1.4950 1.5050 1.4853
64 1.4950 1.5050 1.4853
128 1.4950 1.5050 1.4853

Example 2. In order to verify the wide range of applications of the numerical scheme, the case

where the exact solution is unknown is tested in this numerical example. We consider problems

(1)–(3) in Ω = (0, π) to verify the effectiveness and high accuracy of the numerical scheme. Let

T = 1, the initial condition is u0(x) = sin(x), and the source term is f (x, t) = 0.

In Table 5, the errors in the L2-norm, spatial convergence orders, and CPU times of the
Alikhanov scheme and the fast Alikhanov numerical scheme are presented for fixed values
of p = 2, μ = 1, γ = 2, and N = 2048, with α ∈ {0.3, 0.5, 0.7}. It is worth mentioning that
both numerical schemes can achieve the same approximation effect, but the CPU time of the
fast scheme is much shorter. Table 6 demonstrates that for fixed values of M = 512, μ = 1,
α = 0.8, and γ = 2/α, the L2-norm error decreases as the number of temporal subintervals
increases. It is expected that the convergence order of the fast approximate scheme is O(τ2).
Meanwhile, the error and convergence order remain as expected for changing values of p,
suggesting that the approximation scheme is stable for different p. Table 7 shows the errors,
temporal convergence orders, and CPU times for different μ, where we take M = 512,
p = 2, and γ = 2/α. In each row of the table, the errors and convergence orders change
very little as μ varies, so the method is stable for the coefficient μ, as predicted by our
theoretical analysis. In addition, in order to demonstrate more intuitively the speedup
effect of the SOE approximation, taking α = 0.5, p = 2, μ = 1, γ = 2, and M = 4, we plot
the computation time curves of the two schemes for the N increase, as shown in Figure 3.
It is clear that the fast Alikhanov scheme saves a lot of computational costs compared to
the Alikhanov scheme.

Table 5. Errors, convergence orders in space, and CPU times for the Alikhanov scheme and fast
Alikhanov scheme by fixing p = 2, μ = 1, γ = 2, and N = 2048 for Example 2.

α = 0.3 α = 0.5 α = 0.7

Alikhanov M ESOE(M, N) RateSOE
h ESOE(M, N) RateSOE

h ESOE(M, N) RateSOE
h

4 4.3605 × 10−4 - 4.3568 × 10−4 - 4.5247 × 10−4 -
8 2.6588 × 10−5 4.0356 2.6570 × 10−5 4.0354 2.7511 × 10−5 4.0398

16 1.6529 × 10−6 4.0077 1.6517 × 10−6 4.0078 1.7094 × 10−6 4.0084
32 1.0316 × 10−7 4.0020 1.0308 × 10−7 4.0021 1.0667 × 10−7 4.0022

CPU(s) 1253.8 1197.3 1279.9

α = 0.3 α = 0.5 α = 0.7

Fast Alikhanov M ESOE(M, N) RateSOE
h ESOE(M, N) RateSOE

h ESOE(M, N) RateSOE
h

4 4.3605 × 10−4 - 4.3568 × 10−4 - 4.5247 × 10−4 -
8 2.6588 × 10−5 4.0356 2.6570 × 10−5 4.0354 2.7511 × 10−5 4.0398

16 1.6529 × 10−6 4.0077 1.6517 × 10−6 4.0078 1.7094 × 10−6 4.0084
32 1.0316 × 10−7 4.0020 1.0308 × 10−7 4.0021 1.0667 × 10−7 4.0022

CPU(s) 44.704 45.165 45.322
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Table 6. The ESOE-norm errors and temporal convergence orders with M = 512, μ = 1, α = 0.8, and
γ = 2/α.

p = 1 p = 2 p = 3 p = 4 p = 5

N ESOE(M, N) RateSOE
τ ESOE(M, N) RateSOE

τ ESOE(M, N) RateSOE
τ ESOE(M, N) RateSOE

τ ESOE(M, N) RateSOE
τ

10 1.3260 × 10−3 - 1.3265 × 10−3 - 1.3266 × 10−3 - 1.3266 × 10−3 - 1.3266 × 10−3 -
20 3.4271 × 10−4 1.9520 3.4279 × 10−4 1.9522 3.4281 × 10−4 1.9522 3.4281 × 10−4 1.9522 3.4281 × 10−4 1.9523
40 9.0337 × 10−5 1.9236 9.0353 × 10−5 1.9237 9.0356 × 10−5 1.9237 9.0354 × 10−5 1.9238 9.0351 × 10−5 1.9238
80 2.3914 × 10−5 1.9174 2.3917 × 10−5 1.9176 2.3917 × 10−5 1.9176 2.3914 × 10−5 1.9177 2.3914 × 10−5 1.9177

160 6.3120 × 10−6 1.9217 6.3132 × 10−6 1.9216 6.3131 × 10−6 1.9216 6.3145 × 10−6 1.9211 6.3158 × 10−6 1.9208

Table 7. The ESOE-norm errors, temporal convergence orders, and CPU time (seconds) with M = 512,
p = 2, and γ = 2/α.

μ = 0.05 μ = 0.1

N ESOE(M, N) RateSOE
τ CPU(s) N ESOE(M, N) RateSOE

τ CPU(s)

4 2.8796 × 10−3 - 0.4605 4 3.2656 × 10−3 - 0.4406
8 6.8144 × 10−4 2.0792 0.7595 8 7.7751 × 10−4 2.0704 0.8029

16 1.7604 × 10−4 1.9527 1.5174 16 2.0089 × 10−4 1.9525 1.5480
32 4.8379 × 10−5 1.8634 2.5469 32 5.4828 × 10−5 1.8734 2.7098
64 1.3632 × 10−5 1.8273 5.0930 64 1.5262 × 10−5 1.8450 5.3880

μ = 1 μ = 2

N ESOE(M, N) RateSOE
τ CPU(s) N ESOE(M, N) RateSOE

τ CPU(s)

4 8.7476 × 10−3 - 0.4646 4 9.7976 × 10−3 - 0.5341
8 2.0697 × 10−3 2.0794 0.7903 8 2.3022 × 10−3 2.0894 0.7326

16 5.2813 × 10−4 1.9705 1.4359 16 5.8600 × 10−4 1.9741 1.3253
32 1.3868 × 10−4 1.9291 2.6138 32 1.5258 × 10−4 1.9413 2.5373
64 3.6684 × 10−5 1.9185 5.0402 64 3.9897 × 10−5 1.9353 4.7893
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Figure 3. Comparison of the CPU time between the fast Alikhanov and Alikhanov schemes with
α = 0.5, p = 2, μ = 1, γ = 2, and M = 4.

Example 3. In this example, we consider problem (1) over domains Ω = (0, 1) and T = 1. The

analytic solution is u(x, t) =
(

tα

Γ(1+α)

)
sin(πx) cos(πx), such that the source term f (x, t) is

as follows:

f (x, t) = sin(πx) cos(πx) + 2π2μ
tα

Γ(1 + α)
sin(2πx) + 8π4 tα

Γ(1 + α)
sin(2πx)

+ π

(
tα

Γ(1 + α)

)p+1

(sin(πx))p(cos(πx))p cos(2πx).

Tables 8 and 9 display the temporal and spatial errors, spatial–temporal convergence
orders, and CPU times for various α values. Furthermore, the results show that the pro-
posed scheme can reach the second order of convergence in time and the fourth order of
convergence in space. Next, we test the stability by fixing M = 256, μ = 1, p = 2, and
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γ = 2/α and selecting different T values, which means the time-step sizes are differ-
ent. The numerical results are listed in Table 10, which shows that the fast Alikhanov
scheme is stable and has a relaxed stability restriction. In Table 11, we tested the errors for
α = 0.95, α = 0.99, α = 0.999, and α = 0.9999 by making M = 256, μ = 1, p = 2, and
γ = 2/α, which also shows that the numerical scheme is stable when α → 1−.

Table 8. Errors, temporal convergence orders, and CPU times by fixing p = 2, μ = 1, γ = 4, and
M = 256 for Example 3.

α = 0.3 α = 0.5 α = 0.7

N ESOE(M, N) RateSOE
τ CPU ESOE(M, N) RateSOE

τ CPU ESOE(M, N) RateSOE
τ CPU

16 9.5519 × 10−7 - 0.2818 3.9181 × 10−6 - 0.2457 8.5622 × 10−6 - 0.2060
32 2.4356 × 10−7 1.9715 0.4170 1.0148 × 10−6 1.9490 0.3583 2.2256 × 10−6 1.9438 0.4410
64 5.8573 × 10−8 2.0560 0.7595 2.5816 × 10−7 1.9748 0.7026 5.6804 × 10−7 1.9701 0.7078
128 1.6584 × 10−8 1.8205 1.8818 6.6561 × 10−8 1.9555 1.4596 1.4255 × 10−7 1.9946 1.5336

Table 9. Errors, convergence orders in space, and CPU times by fixing p = 2, μ = 1, γ = 4, and
N = 1000 for Example 3.

α = 0.3 α = 0.5 α = 0.7

M ESOE(M, N) RateSOE
h

CPU ESOE(M, N) RateSOE
h

CPU ESOE(M, N) RateSOE
h

CPU

16 7.7546 × 10−5 - 13.587 7.8530 × 10−5 - 13.533 7.6592 × 10−5 - 13.994
32 4.8243 × 10−6 4.0067 15.856 4.8854 × 10−6 4.0067 15.493 4.7648 × 10−6 4.0067 15.609
64 3.0131 × 10−7 4.0010 19.515 3.0497 × 10−7 4.0017 19.445 2.9744 × 10−7 4.0017 19.734
128 1.9031 × 10−8 3.9848 28.411 1.9111 × 10−8 3.9962 28.621 1.8807 × 10−8 3.9833 28.510

Table 10. The E2-norm errors and temporal convergence orders with M = 256, μ = 1, p = 2, and
γ = 2/α.

T = 0.5 T = 1 T = 4 T = 10

N ESOE(M, N) RateSOE
τ ESOE(M, N) RateSOE

τ ESOE(M, N) RateSOE
τ ESOE(M, N) RateSOE

τ

16 1.3810 × 10−6 - 3.9181 × 10−6 - 3.1501 × 10−5 - 1.2475 × 10−4 -
32 3.5931 × 10−7 1.9424 1.0148 × 10−6 1.9490 8.1468 × 10−6 1.9511 3.2269 × 10−5 1.9507
64 9.0207 × 10−8 1.9939 2.5816 × 10−7 1.9748 2.0664 × 10−6 1.9791 8.2114 × 10−6 1.9745
128 2.3438 × 10−8 1.9444 6.6561 × 10−8 1.9555 5.2247 × 10−7 1.9837 2.0765 × 10−6 1.9835
256 6.0047 × 10−9 1.9647 1.5317 × 10−8 2.1196 1.3334 × 10−7 1.9703 5.2527 × 10−7 1.9830

Table 11. The E2-norm errors and temporal convergence orders with M = 256, μ = 1, p = 2, α = 0.5,
and γ = 2/α.

α = 0.95 α = 0.99 α = 0.999 α = 0.9999

N ESOE(M, N) RateSOE
τ ESOE(M, N) RateSOE

τ ESOE(M, N) RateSOE
τ ESOE(M, N) RateSOE

τ

16 4.0608 × 10−6 - 3.8864 × 10−6 - 3.8417 × 10−6 - 3.8366 × 10−6 -
32 1.0171 × 10−6 1.9973 9.7447 × 10−6 1.9957 9.6418 × 10−7 1.9944 9.6071 × 10−7 1.9977
64 2.5443 × 10−7 1.9992 2.4199 × 10−7 2.0097 2.4196 × 10−7 1.9946 2.3883 × 10−7 2.0081
128 6.5139 × 10−8 1.9657 6.0890 × 10−8 1.9907 6.0593 × 10−8 1.9975 5.8879 × 10−8 2.0201
256 1.6078 × 10−8 2.0184 1.5477 × 10−8 1.9761 1.7048 × 10−8 1.8295 1.4500 × 10−8 2.0217

5. Conclusions

In this work, we propose a fast high-order compact scheme for solving the fractional
KS equation with the generalized Burgers’ type nonlinearity. To deal with the weak
singularity at the initial time, the Alikhanov scheme is implemented to approximate the
Caputo fractional derivative in the time direction. With the aid of the SOE technique, the
computational efficiency is improved and the storage requirement is reduced. In the space
direction, the developed compact difference formulas have been successfully applied for
approximating the spatial derivatives. As a result, a fully discrete scheme is constructed.
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Meanwhile, the stability and convergence with τ2 + h4 of the proposed scheme are proved.
Finally, the results of the numerical experiments demonstrate that the convergence orders
for temporal and spatial convergence achieve second-order and fourth-order accuracies,
respectively. This is highly consistent with the theoretical predictions and effectively verifies
the theoretical analysis.
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Abstract: The Cauchy problem for the Laplace equation in an annular bounded region
consists of finding a harmonic function from the Dirichlet and Neumann data known on
the exterior boundary. This work considers a fractional boundary condition instead of the
Dirichlet condition in a circular annular region. We found the solution to the fractional
boundary problem using circular harmonics. Then, the Tikhonov regularization is used
to handle the numerical instability of the fractional Cauchy problem. The regularization
parameter was chosen using the L-curve method, Morozov’s discrepancy principle, and the
Tikhonov criterion. From numerical tests, we found that the series expansion of the solution
to the Cauchy problem can be truncated in N = 20, N = 25, or N = 30 for smooth
functions. For other functions, such as absolute value and the jump function, we have to
choose other values of N. Thus, we found a stable method for finding the solution to the
problem studied. To illustrate the proposed method, we elaborate on synthetic examples
and MATLAB 2021 programs to implement it. The numerical results show the feasibility
of the proposed stable algorithm. In almost all cases, the L-curve method gives better
results than the Tikhonov Criterion and Morozov’s discrepancy principle. In all cases, the
regularization using the L-curve method gives better results than without regularization.

Keywords: Cauchy problem; inverse problem; ill-posed problem; Laplace equation;
fractional boundary condition; Tikhonov regularization

1. Introduction

The challenge of determining a harmonic function within a bounded annular region
based on partial boundary measurements (Cauchy data) is known as the Cauchy problem
for the Laplace equation [1]. This problem is notoriously ill-posed in the sense of Hadamard,
meaning that small perturbations in the Cauchy data can lead to significant changes in
the solution, resulting in numerical instability. Consequently, regularization techniques
are essential for solving this problem. To ensure a solution to the Cauchy problem, certain
smoothness conditions must be imposed on the Cauchy data (refer to Theorem 1 in [2]).

Various methods have been developed to analyze the Cauchy problem. For instance,
ref. [3] utilized singular value decomposition to find the solution in a circular annular region,

Fractal Fract. 2025, 9, 284 https://doi.org/10.3390/fractalfract9050284
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employing the spectral cut-off of the pseudo-inverse method to manage the numerical
instability. In Refs. [4,5], a novel regularization method was introduced using the method of
fundamental solutions to address the Cauchy problem in both annular and multi-connected
domains. To effectively solve the discrete ill-posed problem arising from a boundary
collocation scheme, Tikhonov regularization and L-curve methods were applied in [5].
Additionally, the technique of layer potentials was used in [3,6,7] to derive an equivalent
system of integral equations. The moment problem approach, based on Green’s formula,
was employed in [8] to solve the Cauchy problem in more complex annular regions. A
similar technique was proposed for the three-dimensional Cauchy problem in [9], where the
solution was expressed using spherical harmonics and Tikhonov regularization. In [10], a
variational formulation was introduced, minimizing the cost functional through conjugate
gradient iterations combined with boundary element discretization. In [1], the potential
on the interior boundary of the annular region was treated as a control function to match
the Cauchy input data on the exterior boundary, incorporating a penalized term in the cost
function. This approach allowed for the determination of the optimal solution using an
iterative conjugate gradient algorithm, with the computational cost involving the solution of
two elliptic problems per iteration, solved by the finite element method. Similar techniques
have been applied to other control problems, as seen in [10–14].

The Cauchy problem holds significant importance due to its numerous applications,
such as estimating pipeline deterioration, calculating solutions or potentials in inaccessible
regions or boundaries, and studying cracks in plates [15,16]. Furthermore, the Cauchy
problem is utilized in inverse electrocardiography problems [17–19] and in solving inverse
problems in electroencephalography (EEG) [14]. EEG signals are known to exhibit fractal
characteristics [20–22]. Additionally, fractional derivatives can model voltage propagation
in axons using a fractional cable geometry to study human neural networks [23]. In the
context of EEG, these fractal characteristics may be related to the sources generating the sig-
nal. One potential approach to relate these fractal characteristics to EEG signals is through
the use of fractional operators, which warrants further investigation in future studies.

In this work, we consider one variant of the Cauchy problem. More precisely, we
consider that we know the action of a fractional operator on the potential on the exterior
boundary instead of the potential itself. We apply the Tikhonov regularization to handle
the numerical instability that presents this variant, which we call the fractional Cauchy
problem. Since we consider circular geometry, we use the Fourier series method to solve
the normal equations. The adjoint operator was found using its definition. From this, we
found a stable algorithm for some of the parameters defining the fractional operator. To
illustrate the results presented in this work, we elaborate synthetic examples and programs
in MATLAB.

Regarding the fractional Cauchy problem, we found no work on it. Therefore, as a
validation of the results from our proposal, we include results for the classical case that
considers a Dirichlet condition, which has been extensively studied, as we attempted to
demonstrate in our literature review, which included a substantial number of articles. We
obtain the same results as in the classical case using our method.

The paper is organized as follows: In Section 2, the definition and some results of
the classical Cauchy problem, as well as the Sturm–Liouville operator, are presented.
Section 2 also finalizes the definition of the fractional Cauchy problem. Section 3 applies
the Tikhonov regularization to find an algorithm to recover the potential on the interior
boundary. Section 4 presents numerical examples to illustrate the algorithm presented in
this work. In Section 5, we discuss the stability of the proposed algorithm. In Section 6, we
give the conclusions.
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2. Problem Formulation

2.1. The Cauchy Problem

Let Ω be a bounded annular region in R2 with sufficiently smooth interior boundary
S1 and exterior boundary S2, as shown in Figure 1.

Figure 1. Bi-dimensional circular annular region Ω.

We consider the following boundary value problem: Find ω, such that

∆w= 0, in Ω,

w= Φ, on S2,

σ
∂w

∂n
= Ψ, on S2,

(1)

where Φ ∈ H1/2(S2), σ ∂w
∂n

∣∣∣
S2

= Ψ ∈ H−1/2(S2), n is the outward unitary vector defined

on ∂Ω, and ∂w/∂n denotes the outward normal derivative of w on S2. For simplicity, we
consider (1) with Ψ ≡ 0 by the change in variable u = w − w1, where w1 is the unique
harmonic function satisfying σ ∂w1/∂n|S2

= Ψ on S2, and w1|S1
≡ 0. Then,

σ∆u= 0, in Ω,

u= V, on S2,

σ
∂u

∂n
= 0, on S2,

(2)

where V = Φ − w1|S2
∈ H1/2(S2). For the analysis of the Cauchy problem (2), the

following problem is employed (see [15]):
Given a function ϕ defined onS1, find u such that

σ∆u= 0, in Ω,

u= ϕ, on S1,

σ
∂u

∂n
= 0, on S2.

(3)

This problem is well-posed, and we will call it the auxiliary problem.
The inverse problem associated with the Cauchy problem can be formulated in the

following way:
Recover the potential u = ϕ on S1 from the measurements u = V on S2, where u is the

solution to the auxiliary problem (3).

Definition 1. A function u ∈ Vϕ is a weak solution to the auxiliary problem (3) if

∫

Ω
σ∇u·∇v dΩ = 0, for all v ∈ V0, (4)
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where

Vϕ =
{

v ∈ H1(Ω) : v = ϕ on S1

}
, (5)

V0 =
{

v ∈ H1(Ω) : v = 0 on S1

}
. (6)

Theorem 1 given in [1] guarantees the existence and uniqueness of the weak solution
and allows us to define the lineal, injective, and compact operator K : Hm−1/2(S1) → L2(S2)

that associates to each ϕ ∈ Hm−1/2(S1) the trace over S2 of the weak solution u to the auxil-
iary problem (3). Operator K is compact because it is the composition of the continuous
operator T : Hm−1/2(S1) → H1(Ω) , which associates to each ϕ ∈ Hm−1/2(S1) the weak
solution to the auxiliary problem (3), with the trace operator Tr from Hm(Ω) into L2(∂Ω),
which is compact. The relationship between problem (2) and auxiliary problem (3) can be
described by the operator K as follows:

A solution to the auxiliary problem (3) is also a solution to the problem (2) if we choose φ on

S1, such that

K ϕ : = u(ϕ)|S2
= V, (7)

where u(ϕ) denotes the solution to the auxiliary problem (3), and V is the known measurement in

problem (2), so we have ϕ = K−1(V).

The following result is very important for the statement of the minimization problem
presented in Section 3, and its demonstration can be found in [10].

Theorem 1. Im(K) is dense in L2(S2).

Equation (7) does not have a solution for all V ∈ L2(S2). However, if we impose some
smoothness conditions on V, we can find global conditions of the existence of the solution,
as in [10]. As K is an injective and well-defined [15] operator, it ensures uniqueness when a
solution is available. Since the operator K is linear, injective, and compact, its inverse K−1 is
not continuous. Therefore, the inverse problem is ill-posed due to its numerical instability.

2.2. Fractional Boundary Operator

The following material has been obtained from [24]. Let Ω1 = {x :|x|< 1} be a unit
ball, 2 ≤ n. The ∂Ω corresponds with the unit sphere; r = |x|, x = x

r , let δ = r d
dr be a

Dirac operator, where r d
dr =

n

∑
j = 1

xj
∂

∂xj
. Let u(x) be a smooth function on the domain Ω.

For any α > 0, the following expression

Jβ[u](x) =
1

Γ(β)

∫ r

0

(
ln

r

s

)β−1 u(sx)

s
ds, x ∈ Ω1 (8)

is called an operator of integration of the order β in the Hadamard sense. Furthermore, we
will assume that J0[u](x) = u(x), x ∈ Ω.

We consider the following modification of the Hadamard operator:

D
β
m[u](x) = Jm−β[δmu](x) =

1
Γ(m − β)

∫ r

0

(
ln

r

s

)m−1−β
(

s
d

ds

)m u(sx)

s
ds, (9)

where m is a positive integer.
Properties and applications of the operators Jβ y Dβ have been studied in [24]. In

that paper, the authors studied a certain generalization of the classical Neumann problem
with the fractional order of boundary operators. Let 0 < βn < . . . < β1 < β ≤ 1,
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PN(D) = D
β
m + ∑

N
j = 1 ajD

βj
m . In the domain Ω1, the authors consider the following

problem:
∆u(x) = 0, x ∈ Ω1, (10)

PN(D)u(x) = f (x), x ∈ ∂Ω1. (11)

As a solution to the last problem, the authors consider a function u ∈ C2(Ω1) ∩
C
(
Ω1
)

satisfying Equation (10) and the boundary condition (11) in a classical sense. Since
J0[u](x) = u(x), then D1[u](x) |∂Ω1

= r du
dr |∂Ω1

= du
dn |∂Ω1

, where n is a normal vector to
the boundary of the domain Ω. Therefore, in the case β = 1 and aj = 0, j = 1, . . . , n, we
obtain the classical Neumann problem.

2.3. Fractional Cauchy Problem

We consider the following fractional Cauchy problem

∆u= 0, in Ω,

D
β
mu
∣∣∣
S2
= V, on S2,

∂u

∂n
= 0, on S2,

(12)

where the operator D
β
m is given in (9).

In this case, the operator D
β
mu(x) = 1

Γ(m−β)

∫ r
R1

(
ln r

s

)m−1−β
(

s d
ds

)m u(sx)
s ds. We note

that the operator is linear and continuous, and it has no singularities since R1 ≤ r, s ≤ R2.
For the analysis of the fractional Cauchy problem (12), we also consider the auxiliary

problem (3). We define the operator K
β
m(ϕ) =

(
Tr ◦

(
D

β
mT

))
(ϕ) = D

β
m u|S2

, which
is a compact operator. We have the following two definitions to study the problem that
concerns us.

Definition 2. The Forward Problem (FP) related to the fractional Cauchy problem consists of

finding the potential V = K
β
m(ϕ) when φ is known.

We can consider other fractional Cauchy problems by changing the boundary operator.
We can consider different kernels for the integral operator. For example, we can take the
kernel of the Riemann–Liouville and Caputo fractional derivative, which can be found
in [25].

Definition 3. Given V ∈ L2(S2), the Inverse Problem (IP) related to the fractional Cauchy

problem consists of finding ϕ ∈ L2(S1) such that K
β
m(ϕ) = V.

3. Methods

3.1. Tikhonov Regularization of the Fractional Cauchy Problem

To find an approximate solution ϕ ∈ L2(S1) of Equation (7) for K = K
β
m when we

have a measurement with error Vδ, the minimization of the following Tikhonov functional
is proposed in [26]:

Jα(ϕ) : =
1
2
‖ K

β
m ϕ − Vδ ‖

2

L2(S2)
+

α

2
‖ ϕ ‖2, ∀ϕ ∈ L2(S1), (13)
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where α is the Tikhonov regularization parameter, which will be chosen by the L-curve
method, Morozov’s discrepancy principle, and numerical tests. The first and second Fréchet
derivatives are given by (see Appendix A):

DJα(ϕ)=
((

K
β
m

)∗
K

β
m + αI

)
ϕ −

(
K

β
m

)∗
Vδ,

D2 Jα(ϕ)=
(

K
β
m

)∗
K

β
m + αI

This least squares procedure is equivalent to solving the normal equation

((
K

β
m

)∗
K

β
m + αI

)
ϕ =

(
K

β
m

)∗
V, (14)

where
(

K
β
m

)∗
is the adjoint operator.

According to Theorem 2.12 given in [26], the operator
(

K
β
m

)∗
K

β
m + αI is boundedly

invertible. Given ϕ ∈ L2(S1), the exact solution to the auxiliary problem (3) in a circular
annular region R1 ≤ r ≤ R2, in polar coordinates, is given by

u(r, θ) = ϕ0 +
∞

∑
k = 1

(R2/R1)
2k

(R2/R1)
2k + 1

{[(
R1

R2

)k( r

R2

)k

+

(
R1

r

)k
]

ϕ1
k cos(kθ)

+

[(
R1

R2

)k( r

R2

)k

+

(
R1

r

)k
]

ϕ2
k sin(kθ)

}
,

(15)

where 0 ≤ θ < 2π. The values ϕ0, ϕ1
k , ϕ2

k , k = 1, 2, . . ., are the Fourier coefficients of ϕ.

The solution to the FP, called measurement, is given by V = K
β
m ϕ, which is obtained by

applying the operator D
β
m, the identities(

s d
ds

)m(
sk cos(kθ)

)
= kmsk cos(kθ),

(
s d

ds

)m(
s−k cos(kθ)

)
= (−1)mkms−k cos(kθ),

(
s d

ds

)m(
sk sin(kθ)

)
= kmsk sin(kθ),

(
s d

ds

)m(
s−k sin(kθ)

)
= (−1)mkms−k sin(kθ),

and then evaluating in r = R2, i.e.,

V(θ) = K
β
m ϕ(θ) =

(
Tr ◦

(
D

β
mT

))
ϕ(θ) = D

β
m u|S2

(θ)

=
∞

∑
k = 1

G
β
m,k

(
ϕ1

k cos(kθ) + ϕ2
k sin(kθ)

)
,

(16)

where the Fourier coefficients Vi
k of exact measurement V are given by Vi

k = G
β
m,k ϕi

k, for
i = 1, 2, in which

G
β
m,k =

km

Γ(m − β)

∫ R2

R1

(
ln

R2

s

)m−1−β
[(

R1

R2

)k sk−1

Rk
2

+ (−1)mRk
1s−k

]
ds. (17)

In the numerical examples, the integrals are calculated using the function quadl of MATLAB.
The ‘exact solution’ u and the ‘exact measurement’ V = v|S2

are generated taking 2N + 1
terms of the Fourier series (15) and (16), with N = 15, which is obtained from numerical
tests. To find the solution to the IP, we must solve the normal equations. To do this, we
calculate the adjoint operator using its definition:

〈(
K

β
m

)∗
W
)

, ϕ〉L2(S1)
=

〈
V, K

β
m ϕ
〉

L2(S2)
. (18)
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Without loss of generality, we consider functions in which the constant term of their
series expansion is null. Using (16) and (18), we found

〈
W, K

β
m ϕ
〉

L2(S2)
=

〈
∞

∑
j = 1

W1
j cos(jθ) + W2

j sin(jθ),
∞

∑
k = 1

G
β
m,k ϕ1

k cos(kθ) + G
β
m,k ϕ2

k sin(kθ)

〉

L2(S2)

=

〈
R2

R1

∞

∑
j = 1

G
β
m,kW1

j cos(jθ) + G
β
m,kW2

j sin(jθ),
∞

∑
k = 1

ϕ1
k cos(kθ) + ϕ2

k sin(kθ)

〉

L2(S1)

=
〈(

K
β
m

)∗
W, ϕ

〉
L2(S1)

.

(19)

Thus, the adjoint operator is defined by
(

K
β
m

)∗
: L2(S2) → L2(S1) ,

(
K

β
m

)∗
(W) =

R2

R1

∞

∑
k = 1

G
β
m,k

(
W1

k cos(kθ) + W2
k sin(kθ)

)
. (20)

After some calculations, the regularized solution ϕα(δ) that minimizes the functional
(13) or that solves normal Equation (14) is given by

ϕα(δ)(θ) =
∞

∑
k = 1

(
ϕ1

k,α(δ) cos(kθ) + ϕ2
k,α(δ) sin(kθ)

)
, on S1, (21)

where

ϕi
k,α(δ) =

R2G
β
m,k(

G
β
m,k

)2
R2+αR1

Vi
k,δ, for i = 1, 2, and k = 1, 2, . . . , N,

and Vi
k,δ are the Fourier coefficients of measurement with error Vδ.

3.2. Tikhonov Regularization for the Classical Cauchy Problem

Given ϕ ∈ L2(S1), the exact solution u(r, θ) to the auxiliary problem (3) in a circu-
lar annular region R1 ≤ r ≤ R2 is given, in polar coordinates, by (15). Therefore, the
measurement V = u|S2

is obtained with r = R2 in (15):

V(θ) = u(r, θ)|r = R2
= ϕ0 + 2

∞

∑
k = 1

(R2/R1)
k

(R2/R1)
2k + 1

{
ϕ1

k cos(kθ) + ϕ2
k sin(kθ)

}
, (22)

which is the solution to the FP. The Fourier coefficients of V are given by

V0 = ϕ0 and = Vi
k =

2(R2/R1)
k

(R2/R1)
2k + 1

ϕi
k, for i = 1, 2.

Therefore, the solution to the IP from the measurement with error

Vδ(θ) = V0,δ +
∞

∑
k = 1

(
V1

k,δ cos(kθ) + V2
k,δ sin(kθ)

)
on S1, (23)

is given by the regularized solution

ϕα(δ)(θ) = ϕ0,α(δ) +
∞

∑
k = 1

(
ϕ1

k,α(δ) cos(kθ) + ϕ2
k,α(δ) sin(kθ)

)
on S1, (24)
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where

ϕi
k,α(δ) =

(
R2
R1

)k
[

1+
(

R2
R1

)2k
]

2
(

R2
R1

)2k
+

αR1
2R2

[
1+

(
R2
R1

)2k
]2 Vi

k,δ, i = 1, 2, k = 1, 2, 3, . . . (25)

where Vi
k,δ are the Fourier coefficients of Vδ and α is the Tikhonov regularization parameter.

Thus, the solution to the IP (of the classical Cauchy problem) applying the Tikhonov regu-
larization method (TRM) is given by (15), replacing the coefficients ϕi

k by the coefficients
ϕi

k,α(δ) given by (25).

4. Numerical Results

In this section, we illustrate the method proposed in this work using synthetic exam-
ples. We know the exact ϕ defined on S1 in this case. Then, we calculated the measurement
with and without noise by solving the FP for the classical and fractional Cauchy problem.

The exact measurement is calculated by solving the FP. To generate the measurements
with error Vδ, we added to the exact measurement a Gaussian error using the function
random of MATLAB. The exact measurement was calculated by solving the FP. Therefore,
we define

Vδ = V + E, (26)

where E = random(‘Normal’, μ0,σ0 , 1, m) is a vector of random numbers of length m (num-
bers of nodes on S2) with a normal distribution. The corresponding numerical solutions
are denoted by ϕα(δ).

In this section, we obtain the relative error between the exact source ϕ and the re-

covered source ϕα(δ) shown in tables and denoted by RE
(

ϕ, ϕα(δ)

)
. The relative error is

given by

RE
(

ϕ, ϕα(δ)

)
= ‖ ϕ−ϕα(δ) ‖L2(S1)

/‖ ϕ ‖L2(S1)
,

and the relative error between the exact measurement V and the measurement with error
Vδ is denoted by RE(V, Vδ), which is given by

RE(V, Vδ) = ‖ V−Vδ ‖L2(S2)
/‖ V ‖L2(S2)

,

where ‖ · ‖L2(Si)
is the norm of the space L2(Si), i = 1, 2.

4.1. Solution to the IP Related to the Classical Cauchy Problem

In the following two examples, we consider a circular annular region R1 ≤ r ≤ R2

with R1 = 1 and R2 = 1.2; then S1 and S2 are two circumferences of radii R1 = 1 and
R2 = 1.2 (see Figure 1), respectively.

Example 1. We take the ‘exact potential’ ϕ(x, y) = x2 − y2, (x, y) ∈ S1, that in polar coordinates

is ϕ(θ) = cos(2θ). In this case, V0 = ϕ0 = 0, and the solution to the forward problem, that is,

the solution to the auxiliary problem (3), is given by

V(θ) = Kϕ(θ) = u(r, θ)|r = R2
=

⎡
⎢⎣

2
(

R2
R1

)2

1 +
(

R2
R1

)4

⎤
⎥⎦ϕ1

2 cos(2θ), θ ∈ [0, 2π],

where ϕ1
2 = 1. Then, the ‘exact solution’ V and the ‘measurement with error’ Vδ are

generated with the first N terms of the Fourier series (22) and (23), respectively. In this

case, we take values of N = 20, 25, and 30 terms. For smooth functions in the Cauchy

data, these values of N are obtained by combining numerical tests and the following ideas:
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K(ϕ) = V is approximated by a truncation KN(ϕ) = VN choosing N such that we can

guarantee that ‖ V − VN ‖2
L2(S2)

= ‖ K(ϕ)− KN(ϕ) ‖2
L2(S2)

< δ2

4 , where the approximation

KN(g) = ∑
N
k = 1

[
V1

k cos kθ + V2
k sin kθ

]
. From the Parseval equality and (22), where we found

that the Fourier coefficients of V decay at least as 1/k2, we infer

‖ V − VN ‖2
L2(S2)

< 2π/N < δ2/4. (27)

From this, we can take N > 8π
δ2 for obtaining the inequality. With this, we obtain an error regarding

the truncation of the series expansion.

Now, the measurement error is simulated by adding a random error to each Fourier
coefficient V1

k , V2
k , k = 1, 2, . . . , N, such that ‖ VN − Vδ,N ‖2

L2(S2)
< δ2

4 , which guarantees
that ‖ V − Vδ,N ‖L2(S2)

≤ δ.
For other functions, such as absolute value and the jump function, we have to choose

other values of N. This is shown in Examples 3 and 4, which are included in Section 4.2.6 .
Thus, we consider synthetic examples; that is, we examine the fundamental elements

of the problems studied, such as how real data are generated and the inherent error within
them. In this way, we attempt to emulate the characteristics of real-world problems so that
our proposal is closely aligned with providing a solution to them.

Therefore, the measurement with error Vδ is given by the series

Vδ(θ) =
N

∑
k = 1

(
V1

k,δ cos(kθ) + V2
k,δ sin(kθ)

)
on S1, (28)

where Vi
k,δ are the Fourier coefficients of Vδ. The regularized solution ϕα(δ) to the inverse

problem is given by the series (24) truncated to N terms. The solution without regularization
ϕδ to the IP is given by

ϕδ(θ) =
N

∑
k = 1

(
ϕ1

k,δ cos(kθ) + ϕ2
k,δ sin(kθ)

)
on S1, (29)

where the coefficients ϕi
k,δ are given by

ϕi
k,δ =

[
1+

(
R2
R1

)2k
]

2
(

R2
R1

)k Vi
k,δ, i = 1, 2. (30)

Remark 1. In all tables associated with the classical case, if α(δ) = 0, then the solution ϕα(δ) is

the solution without regularization ϕδ given by (29), where the coefficients ϕi
k,δ are given by (30).

Table 1 shows the numerical results for data with and without error, applying TRM to
solve the IP of the classical Cauchy problem (2). In this case, we observe that the solutions
with regularization ϕα(δ) have a percentage of relative errors around 10%, equal to the
percentage of error included in the data with error Vδ for δ = 0.1. The regularization
parameter was chosen as α(δ) = δ for N = 20, 25, and 30. Also, we can see that the

RE
(

ϕ, ϕα(δ)

)
decreases when the error δ tends to zero, while the RE(ϕ, ϕδ) increases for

each value of N. In particular, the RE(ϕ, ϕδ) increases faster when N = 30, for δ = 0.1,
0.01, and y 0.001. In this case, the regularization parameter α(δ) depends on Vδ.
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Table 1. Numerical results applying TRM to solve the IP related to the classical Cauchy problem (2),
for ϕ(x, y) = x2 − y2, (x, y) ∈ S1, and different values of δ and N.

δ N α(δ) RE(V,Vδ) RE(ϕ,ϕα(δ)) RE(ϕ,ϕδ)

0 20 0 0 0 0

0.1 20 0.1 0.1069 0.1465 0.8224
0.1 25 0.1 0.1034 0.1471 1.6048
0.1 30 0.1 0.1126 0.1435 3.0063

0.01 20 0.01 0.0102 0.0342 0.0663
0.01 25 0.01 0.0112 0.0360 0.2137
0.01 30 0.01 0.0114 0.0362 0.4820

0.001 20 0.001
9.0770
× 10−4 0.0050 0.0057

0.001 25 0.001
8.8517
× 10−4 0.0068 0.0122

0.001 30 0.001
9.5479
× 10−4 0.0083 0.0354

Figure 2a,b show the graphs of the exact measurement V and with error Vδ, the graphs
of the exact potential ϕ and its approximations ϕα(δ) (with regularization) and ϕδ (without
regularization) taking α(δ) = 0.1 and N = 30, corresponding to Example 1, for δ = 0.1
(see Table 1). In Figure 2b, we can see the ill-posedness of the inverse problem if we do not

apply regularization, where RE
(

ϕ, ϕα(δ)

)
= 0.1435 and RE(ϕ, ϕδ) = 3.0063.

Figure 2. (a) Exact measurement V (black line) and with error Vδ (red line). (b) Exact potential ϕ and
its approximations ϕα(δ) and ϕδ applying regularization and without regularization, corresponding
to Example 1 for δ = 0.1 (see Table 1). We take α(δ) = 0.1 and N = 30 in this case.

Example 2. We consider the ‘exact potential’ ϕ(x, y) = ex sin(y), for (x, y) ∈ S1. Similar to the

first example, the ‘exact measurement’ V and the ‘measurement with error’ Vδ are generated with

the first N terms of the Fourier series (22) and (23), respectively, such that ‖ ϕN−ϕ ‖L2(S1)
≤ ǫF,

with 0 < ǫF < 10−14. In this case, V0 = ϕ0 = 0 and the Fourier coefficients ϕk, 1 ≤ k ≤ N,

are obtained numerically using the intrinsic function quadl of MATLAB. Here, we take values of

N = 18, 25, and 30 terms.

Table 2 shows the numerical results for data with and without error, applying TRM to
solve the IP of the classical Cauchy problem (2). Analogous to Example 1, we can observe
that the solutions with regularization ϕα(δ) have a percentage of relative errors around 10%,
equal to the percentage of error included in the data with error Vδ for δ = 0.1. Also, we

can see that the RE
(

ϕ, ϕα(δ)

)
decreases when the error δ tends to zero, while the RE(ϕ, ϕδ)

increases for each value of N. In particular, the RE(ϕ, ϕδ) increases when N = 30 for each
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δ = 0.1, 0.01, and 0.001. As in the previous example, the regularization parameter α(δ)

depends on Vδ, and we take α(δ) = δ for each value of N = 18, 25, and 30.

Table 2. Numerical results applying TRM to solve the IP related to the classical Cauchy problem (2),
for ϕ(x, y) = ex sin(y), (x, y) ∈ S1 and different values of δ and N.

δ N α(δ) RE(V,Vδ) RE(ϕ,ϕα(δ)) RE(ϕ,ϕδ)

0 18 0 0 2.5338 × 10−17 2.4537 × 10−17

0.1 18 0.1 0.1161 0.1590 0.8005
0.1 25 0.1 0.1125 0.1571 1.6366
0.1 30 0.1 0.1340 0.1512 5.7825

0.01 18 0.01 0.0117 0.0357 0.0509
0.01 25 0.01 0.0105 0.0392 0.1485
0.01 30 0.01 0.0112 0.0364 0.3478

0.001 18 0.001 8.8274 × 10−4 0.0046 0.0048
0.001 25 0.001 9.9199 × 10−4 0.0095 0.0162
0.001 30 0.001 0.0011 0.0099 0.0423

Figure 3a,b show the graphs of the exact measurement V and with error Vδ, the graphs
of the exact potential ϕ and its approximations ϕα(δ) (with regularization) and ϕδ (without
regularization) taking α(δ) = 0.1 and N = 30, corresponding to Example 2, for δ = 0.1
(see Table 2). In Figure 3b, we can see the ill-posedness of the inverse problem if we do not

apply regularization. In this case, RE
(

ϕ, ϕα(δ)

)
= 0.1512 and RE(ϕ, ϕδ) = 5.7825.

Figure 3. (a) Exact measurement V (black line) and with error Vδ (red line). (b) Exact potential ϕ and
its approximations ϕα(δ) and ϕδ applying regularization and without regularization, corresponding
to Example 2 for δ = 0.1 (see Table 2). In this case, we take α(δ) = 0.1 and N = 30.

4.2. Solution to the IP Related to the Fractional Cauchy Problem

In this section, we look into the performance of the TRM to solve the IP of the fractional
Cauchy problem (12) in a circular annular region R1 ≤ r ≤ R2 with R1 = 1 and R2 = 1.2.
Then, S1 and S2 are two circumferences of radii R1 = 1 and R2 = 1.2 (see Figure 1),
respectively. In this case, we consider as ‘exact potentials’ the two functions from the previous
subsection: ϕ(x, y) = x2 − y2 and ϕ(x, y) = ex sin(y), for (x, y) ∈ S1.

Similar to the previous subsection, the ‘exact solution’ V and the ‘measurement with error’
Vδ are obtained by truncating the series (16) and (23) up to N terms, respectively; further-
more, the Fourier coefficients ϕ1

k , ϕ2
k , and G

β
m,k (given by (17)) are obtained numerically

using the function quadl of MATLAB.
In this case, we take values of N = 18, 20, 25, and 30 terms. Therefore, the measure-

ment with error Vδ is given by the series (23) truncated to N terms. The regularized solution
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ϕα(δ) to the IP is given by the series (21) truncated to N terms. Also, the solution without
regularization ϕδ to the IP is given by (29), where

ϕi
k,δ = 1

G
β
m,k

Vi
k,δ, i = 1, 2, k = 1, 2, . . . , N. (31)

Remark 2. In all tables from the fractional case, if α(δ) = 0, the solution ϕα(δ) is the solution

without regularization ϕδ given by (29), where the coefficients ϕi
k,δ are given by (31).

4.2.1. Case 1: β = 0.5 and m = 1, When δ Tends to Zero

In this section, we consider the case when β = 0.5, m = 1, and for different values of
δ close to zero. Tables 3 and 4 show the relative errors of the approximations ϕα(δ) and ϕδ,
when δ tends to zero, for the two exact functions ϕ considered in Section 4.1. In both cases,

we observe that the RE
(

ϕ, ϕα(δ)

)
of the solutions with regularization ϕα(δ) is less than the

RE(V, Vδ) for each value of δ and N given in these tables. Additionally, the RE
(

ϕ, ϕα(δ)

)

and RE(ϕ, ϕδ) are of the same order, i.e., the solutions without regularization ϕδ are close
to regularized solutions ϕα(δ) for β = 0.5 and m = 1. In both cases, the measurements
with errors Vδ do not have much impact on recovered solution ϕδ, and they are close to
ϕα(δ). We observe from the relative errors that regularized approximations ϕα(δ) are better
than those without regularization. In this case, the regularization parameter α(δ) depends
on Vδ, N, m, and β.

Table 3. Numerical results applying TRM to solve IP related to the fractional Cauchy problem (12),
for ϕ(x, y) = x2 − y2, (x, y) ∈ S1, and different values of δ and N.

δ N α(δ) β m RE(V,Vδ) RE(ϕ,ϕα(δ)) RE(ϕ,ϕδ)

0 20 0 0.5 1 0 1.1102 × 10−16 0

0.1 20 1 × 10−2 0.5 1 0.0970 0.0617 0.0880
0.1 25 1 × 10−2 0.5 1 0.0979 0.0719 0.0990
0.1 30 1 × 10−2 0.5 1 0.1038 0.0775 0.1217

0.01 20 1 × 10−4 0.5 1 0.0093 0.0037 0.0039
0.01 25 1 × 10−4 0.5 1 0.0091 0.0070 0.0070
0.01 30 1 × 10−4 0.5 1 0.0127 0.0072 0.0073

0.001 20 1 × 10−6 0.5 1 9.6950 × 10−4 8.9805 × 10−4 8.9826 × 10−4

0.001 25 1 × 10−6 0.5 1 8.3006 × 10−4 3.4557 × 10−4 3.4620 × 10−4

0.001 30 1 × 10−6 0.5 1 9.8327 × 10−4 5.4898 × 10−4 5.4925 × 10−4

Considering δ = 0.1, β = 0.5, and m = 1, we show the graphs for the following
potentials ϕ(x, y) = x2 − y2 (Figure 4) and ϕ(x, y) = ex sin(y) (Figure 5) for (x, y) ∈ S1

where the following is true:

(a) The exact measurement V and the measurement with error Vδ.
(b) The exact potential ϕ and its approximations ϕα(δ) (with regularization) and ϕδ (with-

out regularization) taking α(δ) = 10−2 and N = 30.
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Table 4. Numerical results applying TRM to solve IP related to the fractional Cauchy problem (12),
for ϕ(x, y) = ex sin(y), (x, y) ∈ S1, and different values of δ and N.

δ N α(δ) β m RE(V,Vδ) RE(ϕ,ϕα(δ)) RE(ϕ,ϕδ)

0 18 0 0.5 1 0 2.4537 × 10−17 2.4537 × 10−17

0.1 18 1 × 10−4 0.5 1 0.1292 0.1196 0.1212
0.1 25 1 × 10−4 0.5 1 0.1732 0.1238 0.1296
0.1 30 1 × 10−4 0.5 1 0.1921 0.0624 0.0672

0.01 18 1 × 10−5 0.5 1 0.0147 0.0126 0.0129
0.01 25 1 × 10−5 0.5 1 0.0166 0.0124 0.0129
0.01 30 1 × 10−5 0.5 1 0.0177 0.0069 0.0071

0.001 18 1 × 10−6 0.5 1 0.0012 8.6623 × 10−4 9.1811 × 10−4

0.001 25 1 × 10−6 0.5 1 0.0017 8.6801 × 10−4 9.1904 × 10−4

0.001 25 1 × 10−6 0.5 1 0.0018 7.3211 × 10−4 7.7961 × 10−4

Figure 4. (a) Exact measurement V (black line) and with error Vδ (red line). (b) Exact potential ϕ and
its approximations ϕα(δ) and ϕδ, corresponding to Example 1 for δ = 0.1 (see Table 3). In this case,
we take α(δ) = 10−2 and N = 30.

Figure 5. (a) Exact measurement V (black line) and with error Vδ (red line). (b) Exact potential ϕ and
its approximations ϕα(δ) and ϕδ, corresponding to Example 2 for δ = 0.1 (see Table 4). In this case,
we take α(δ) = 10−4 and N = 30.

See Tables 3 and 4 for other values of the parameters N and δ.

In Figure 4b, the RE
(

ϕ, ϕα(δ)

)
= 0.0775 is less than RE(ϕ, ϕδ) = 0.1217 for δ = 0.1

(see Table 3). In Figure 5b, the RE
(

ϕ, ϕα(δ)

)
= 0.0624 is less than RE(ϕ, ϕδ) = 0.0672 for

δ = 0.1 (see Table 4).
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4.2.2. Case 2: β ∈ (m − 1, m), for m = 2, . . . , 12 and δ = 0.1

Tables 5 and 6 show the relative errors of the approximations ϕα(δ) and ϕδ when
δ = 0.1 for the two exact functions ϕ considered in Section 4.1.

Table 5. Case 2: Numerical results applying TRM to solve IP related to the fractional Cauchy problem
(12) for δ = 0.1 and different values of β and m, where ϕ(x, y) = x2 − y2, (x, y) ∈ S1.

N α(δ) β m RE(V,Vδ) RE(ϕ,ϕα(δ)) RE(ϕ,ϕδ)

20 1 × 10−1 1.5 2 0.1027 0.0360 0.0392
25 8 × 10−1 1.5 2 0.1017 0.0518 0.0819
30 5 × 10−1 1.5 2 0.1136 0.0597 0.0718
20 2 × 10−1 2.5 3 0.0936 0.0508 0.4857
20 1 × 101 3.5 4 0.0969 0.0474 0.3523
20 1 × 100 4.5 5 0.0915 0.0421 1.5924
20 1 × 102 5.5 6 0.1112 0.0248 1.2606
20 1 × 101 6.5 7 0.1078 0.0366 5.8758
20 1 × 102 7.5 8 0.1045 0.0351 2.2946
20 1 × 102 8.5 9 0.0916 0.0197 16.6149
20 1 × 103 9.5 10 0.0996 0.0274 21.0258
20 1 × 103 10.5 11 0.0939 0.0176 46.6720
20 1 × 103 11.5 12 0.0861 0.0407 33.8060

Table 6. Case 2: Numerical results applying TRM to solve IP related to the fractional Cauchy problem
(12) for δ = 0.1 and different values of β and m, where ϕ(x, y) = ex sin(y), (x, y) ∈ S1.

N α(δ) β m RE(V,Vδ) RE(ϕ,ϕα(δ)) RE(ϕ,ϕδ)

18 1 × 10−2 1.5 2 0.1279 0.0342 0.0411
25 1 × 10−2 1.5 2 0.1780 0.0258 0.0264
30 1 × 10−2 1.5 2 0.1732 0.0439 0.0509
18 9 × 10−4 2.5 3 0.1629 0.1437 0.1504
18 4 × 10−1 3.5 4 0.1461 0.0931 0.3543
18 1.4 × 10−1 4.5 5 0.1466 0.1385 7.4132
18 1 × 101 5.5 6 0.1757 0.3306 9.1616
18 1 × 101 6.5 7 0.1512 0.3654 478.6290
18 4.2 × 102 7.5 8 0.1643 0.3822 310.6255
18 3 × 105 8.5 9 0.1732 0.8982 633.1135
18 2 × 107 9.5 10 0.2062 0.9546 4.0208 × 103

18 2 × 107 10.5 11 0.1712 0.8948 1.9672 × 105

18 8 × 108 11.5 12 0.1636 0.9326 2.2607 × 105

In Table 5, we observe that RE
(

ϕ, ϕα(δ)

)
< RE(V, Vδ) for each value of N, β, and m

given in the mentioned table. Also, the RE
(

ϕ, ϕα(δ)

)
and RE(ϕ, ϕδ) are of the same order,

i.e., the solutions without regularization ϕδ are close to regularized solutions ϕα(δ), for
δ = 0.1, N = 20, 25, 30, β = 1.5, and m = 2. We can see similar results in Table 6
for δ = 0.1, N = 18, 25, 30, β = 1.5, 2.5, m = 2, and 3; however the regularized
approximates ϕα(δ) are better than the solutions without regularization. Furthermore,
RE(ϕ, ϕδ) < RE(V, Vδ) and these increase suddenly, starting at m = 3 and m = 4 (see
Tables 5 and 6) for the functions ϕ(x, y) = x2 − y2 and ϕ(x, y) = ex sin(y) for (x, y) ∈ S1,
respectively. As in the previous case, the regularization parameter α(δ) changes depending
on Vδ, N, m, and β.

We show the graphs for the following functions:
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• ϕ(x, y) = x2 − y2 (Figure 6 with parameters β = 1.5, m = 2, δ = 0.1, α(δ) = 5 ×
10−1, and N = 30; and Figure 7 with parameters β = 2.5, m = 3, δ = 0.1,
α(δ) = 2 × 10−1, and N = 20).

• ϕ(x, y) = ex sin(y) (Figure 8 with parameters β = 7.5, m = 8, δ = 0.1,
α(δ) = 4.2 × 102, and N = 18).

Figure 6. (a) Exact measurement V (black line) and with error Vδ (red line). (b) Exact potential ϕ and
its approximations ϕα(δ) and ϕδ, corresponding to Example 1 for β = 1.5, m = 2, and δ = 0.1 (see
Table 5). In this case, we take α(δ) = 5 × 10−1 and N = 30.

Figure 7. (a) Exact measurement V (black line) and with error Vδ (red line). (b) Exact potential ϕ and
its approximations ϕα(δ) and ϕδ, corresponding to Example 1 for β = 2.5, m = 3, and δ = 0.1 (see
Table 5). In this case, we take α(δ) = 2 × 10−1 and N = 20.

Figure 8. (a) Exact measurement V (black line) and with error Vδ (red line). (b) Exact potential ϕ and
its approximations ϕα(δ) and ϕδ, corresponding to Example 2 for β = 7.5, m = 8, and δ = 0.1 (see
Table 6). In this case, we take α(δ) = 4.2 × 102 and N = 18.

For (x, y) ∈ S1. These figures show the following:

(a) The exact measurement V and the measurement with error Vδ.
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(b) The exact potential ϕ and its approximations ϕα(δ) (with regularization) and ϕδ (with-
out regularization).

In both cases, as mentioned in the previous paragraph, the errors increase suddenly,
starting at m = 3 for the first function and m = 4 for the second one, as can be seen
in Figures 7b and 8b, where we can see the ill-posedness of the IP if we do not apply

regularization. For example, for the second function, the RE
(

ϕ, ϕα(δ)

)
= 310.6255 is

much greater than RE(ϕ, ϕδ) = 0.3822 for β = 7.5, m = 8, and δ = 0.1 (see Table 6).

However, in this same example, for m = 9, 10, 11, and 12, the RE
(

ϕ, ϕα(δ)

)
increases

around 90%. Nevertheless, RE(ϕ, ϕδ) is bigger than RE
(

ϕ, ϕα(δ)

)
. In this case, we could

use the regularized solution as an initial point of an iterative method to recover a better
solution to the IP.

4.2.3. Case 3: β ∈ (m − 1, m), When β Is Next to m − 1 or m and δ = 0.1

This section considers the case when m − 1 < β < m and β is next to m − 1 or m.
Tables 7 and 8 show the relative errors of the approximations ϕα(δ) and ϕδ when δ = 0.1
for the same two exact functions ϕ considered in Section 4.1.

Table 7. Case 3: Numerical results applying TRM to solve the IP related to the fractional Cauchy
problem (12) for δ = 0.1 and different values of β and m, where ϕ(x, y) = x2 − y2, (x, y) ∈ S1.

N α(δ) β m RE(V,Vδ) RE(ϕ,ϕα(δ)) RE(ϕ,ϕδ)

20 1 × 10−3 0.1 1 0.1093 0.0565 0.0765
20 1 × 10−5 0.0001 1 0.1032 0.0699 0.0705
20 1 × 10−12 0.0000001 1 0.1040 0.0394 0.0394

20 1 × 10−3 0.9 1 0.0922 0.0809 0.0817
20 1 × 10−8 0.9999 1 0.0988 0.0581 0.0583
20 1 × 10−12 0.9999999 1 0.0967 0.0921 0.1277

20 1 × 10−1 1.1 2 0.1081 0.0563 0.0647
20 5 × 10−2 1.0001 2 0.0931 0.0791 0.0984
20 1 × 10−2 1.0000001 2 0.0979 0.0901 0.0953

20 1 × 10−1 1.9 2 0.0980 0.0726 0.0746
20 1 × 10−5 1.9999 2 0.0971 0.0449 0.0488
20 1 × 10−11 1.9999999 2 0.1033 0.0997 0.1105

20 1 × 10−2 2.1 3 0.0998 0.0392 0.2108
20 1 × 10−2 2.0001 3 0.0905 0.0479 0.3250
20 1 × 10−2 2.0000001 3 0.0894 0.0264 0.1021

20 1 × 10−1 2.9 3 0.1110 0.0860 0.1731
20 1 × 10−5 2.9999 3 0.0999 0.0804 0.4756
20 1 × 10−11 2.9999999 3 0.1027 0.0672 0.3546

20 1 × 100 3.1 4 0.1061 0.0328 0.1583
20 1 × 102 3.9 4 0.1061 0.0738 0.5624
20 1 × 10−1 4.1 5 0.0863 0.0421 1.8856
20 1 × 100 4.9 5 0.1030 0.0401 0.2528
20 1 × 101 5.1 6 0.0751 0.0368 1.5197
20 1 × 102 5.9 6 0.0957 0.0438 1.0323
20 1 × 100 6.1 7 0.0917 0.0267 5.3155
20 1 × 100 6.9 7 0.1020 0.0600 5.5627

20 1 × 102 7.1 8 0.0935 0.0199 3.3483
20 1 × 102 7.0000001 8 0.0827 0.0206 1.7258

20 1 × 103 7.9 8 0.0870 0.0212 4.5019
20 1 × 10−8 7.9999999 8 0.0986 0.0454 4.2454
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Table 7. Cont.

N α(δ) β m RE(V,Vδ) RE(ϕ,ϕα(δ)) RE(ϕ,ϕδ)

20 1 × 101 8.1 9 0.1155 0.0276 14.3075
20 1 × 102 8.9 9 0.0953 0.0342 34.0155
20 1 × 102 9.1 10 0.1013 0.0508 20.6047
20 1 × 104 9.9 10 0.0972 0.0095 24.1306
20 1 × 102 10.1 11 0.0941 0.0271 35.0730
20 1 × 103 10.9 11 0.0956 0.0090 90.0697
20 1 × 103 11.1 12 0.0951 0.0226 65.9229
20 1 × 104 11.9 12 0.0967 0.0475 101.7022

Table 8. Case 3: Numerical results applying TRM to solve IP related to the fractional Cauchy problem
(12) for δ = 0.1 and different values of β and m, where ϕ(x, y) = ex sin(y), (x, y) ∈ S1.

N α(δ) β m RE(V,Vδ) δRE(ϕ,ϕα(δ)) RE(ϕ,ϕδ)

30 1 × 10−5 0.1 1 0.1429 0.0210 0.0230
30 1 × 10−6 0.0001 1 0.1849 0.0396 0.0401
30 1 × 10−13 0.0000001 1 0.1762 0.0314 0.0314

30 1 × 10−4 0.9 1 0.1674 0.0448 0.0452
30 1 × 10−8 0.9999 1 0.1299 0.0544 0.0575
30 1 × 10−15 0.9999999 1 0.1748 0.0271 0.0272

30 1 × 10−5 1.1 2 0.1613 0.0454 0.0454
30 1 × 10−5 1.0001 2 0.1829 0.0492 0.0493
30 1 × 10−5 1.0000001 2 0.1842 0.0584 0.0585

30 1 × 10−1 1.9 2 0.1739 0.0353 0.0431
30 1 × 10−6 1.9999 2 0.1870 0.0380 0.0413
30 1 × 10−12 1.9999999 2 0.1690 0.0609 0.0674

30 1 × 10−4 2.1 3 0.2071 0.0760 0.1016
30 1 × 10−8 2.0001 3 0.2114 0.1688 0.1689
30 1 × 10−9 2.0000001 3 0.1877 0.1176 0.1176

30 3 × 10−2 2.9 3 0.2256 0.1156 0.2868
30 1 × 10−6 2.9999 3 0.1676 0.0761 0.4059
30 5 × 10−13 2.9999999 3 0.2155 0.1581 0.1751

30 5 × 10−2 3.1 4 0.2057 0.1258 0.1717
30 1 × 100 3.9 4 0.2001 0.0881 0.3453
30 5 × 10−2 4.1 5 0.2545 0.3090 16.5294
30 1 × 100 4.9 5 0.2011 0.2408 6.8619
30 4 × 100 5.1 6 0.1983 0.4226 12.4482
30 5 × 101 5.9 6 0.2049 0.3878 7.9340
30 7 × 10−1 6.1 7 0.2124 0.4678 243.7232
30 6 × 101 6.9 7 0.2553 0.5497 363.0725

30 4 × 101 7.1 8 0.2463 0.4505 123.0513
30 5 × 101 7.0001 8 0.2452 0.2910 240.1527
30 2 × 101 7.0000001 8 0.2335 0.1839 119.2328

30 2 × 103 7.9 8 0.2184 0.1710 402.7594
30 1.3 × 10−2 7.9999 8 0.2308 0.3440 181.8997
30 2 × 10−8 7.9999999 8 0.1833 0.5806 164.4764
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Table 8. Cont.

N α(δ) β m RE(V,Vδ) δRE(ϕ,ϕα(δ)) RE(ϕ,ϕδ)

30 3 × 104 8.1 9 0.2548 0.8971 3.4981 × 103

30 2 × 106 8.9 9 0.2054 0.9059 2.8978 × 103

30 2 × 106 9.1 10 0.2260 0.8857 6.8133 × 103

30 7 × 107 9.9 10 0.2241 0.8896 6.2431 × 103

30 4 × 106 10.1 11 0.2233 0.9011 2.5172 × 105

30 2 × 108 10.9 11 0.2069 0.8934 1.9773 × 105

30 5 × 108 11.1 12 0.2479 0.9212 1.1346 × 105

30 5 × 109 11.9 12 0.2372 0.8996 3.4904 × 105

In Table 7, we observe that the RE
(

ϕ, ϕα(δ)

)
are less than the RE(V, Vδ) for each value

of N, β, and m given in this table. We can see that RE
(

ϕ, ϕα(δ)

)
and RE(ϕ, ϕδ) are of

the same order for m = 1, 2, i.e., the solutions without regularization ϕδ are close to
regularized solutions ϕα(δ). However, the regularized approximates ϕα(δ) are better than

the solutions without regularization for m = 1, 2. Nonetheless, RE
(

ϕ, ϕα(δ)

)
increases

more than RE(V, Vδ) starting at m = 3. Furthermore, we can observe similar results

in Table 8, where the RE
(

ϕ, ϕα(δ)

)
are less than the RE(V, Vδ) for m = 1, 2, 3, 4, with

δ = 0.1, N = 30, and the different values of β are close to m or m − 1 given in this table.

For the values of m = 5, 6, 7, and 8, the RE
(

ϕ, ϕα(δ)

)
are around the percentage of the

RE(V, Vδ). For the other values of m = 9, 10, 11, and 12, given in Table 8, the corresponding

RE
(

ϕ, ϕα(δ)

)
increases around 90%, but no more than RE(ϕ, ϕδ), i.e., the TRM does not

provide a good approximate solution to the IP. In this case, we could use the regularized
solution ϕα(δ) as an initial point of an iterative method to recover a better solution to
the IP. Furthermore, the relative errors of the recovered solutions ϕδ without applying
regularization increase suddenly, starting at m = 7 and m = 5 (see Tables 7 and 8) for the
functions ϕ(x, y) = x2 − y2 and ϕ(x, y) = ex sin(y) for (x, y) ∈ S1, respectively. As in the
previous cases, the regularization parameter α(δ) changes depending on Vδ, N, m, and β.

We show the graphs for the following functions:

• ϕ(x, y) = x2 − y2 (Figure 9 with parameters β = 7.1, m = 8, δ = 0.1, α(δ) = 102,
and N = 20).

• ϕ(x, y) = ex sin(y) (Figure 10 with parameters β = 7.9999999, m = 8, δ = 0.1,
α(δ) = 2 × 10−8, and N = 30).

Figure 9. (a) Exact measurement V (black line) and with error Vδ (red line). (b) Exact potential ϕ and
its approximations ϕα(δ) and ϕδ, corresponding to Example 1 for β = 7.1, m = 8, and δ = 0.1 (see
Table 7). In this case, we take α(δ) = 102 and N = 20.
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Figure 10. (a) Exact measurement V (black line) and with error Vδ (red line). (b) Exact potential ϕ

and its approximations ϕα(δ) and ϕδ, corresponding to Example 1 for β = 7.9999999, m = 8, and
δ = 0.1 (see Table 8). In this case, we take α(δ) = 2 × 10−8 and N = 30.

For (x, y) ∈ S1. These figures show the following:

(a) The exact measurement V and the measurement with error Vδ.
(b) The exact potential ϕ and its approximations ϕα(δ) (with regularization) and ϕδ (with-

out regularization).

In both cases, as mentioned in the previous paragraph, the errors increase starting
at m = 7 for the first function and starting at m = 5 for the second one, as can be seen
in Figures 9b and 10b for m = 8, where we can see the ill-posedness of the IP if we do
not apply regularization. For example, for the first function, the RE(ϕ, ϕδ) = 3.3483 is

greater than RE
(

ϕ, ϕα(δ)

)
= 0.0199 for β = 7.1, m = 8, and δ = 0.1 (see Table 7).

For the second one, the RE(ϕ, ϕδ) = 164.4764 is greater than RE
(

ϕ, ϕα(δ)

)
= 0.5806 for

β = 7.9999999, m = 8, and δ = 0.1 (see Table 8). In this latter function, the approximate
solution ϕα(δ) is far from the exact solution ϕ. In this case, we could apply an iterative
method to obtain a better solution, taking ϕα(δ) as an initial point.

4.2.4. Case 4: β < m − 1, for m = 2,. . .,12 and δ = 0.1

In this Section, we consider the case when β < m − 1 for m = 2, 3,. . .,12 and δ = 0.1.
Tables 9 and 10 show the relative errors of the approximations ϕα(δ) and ϕδ when δ = 0.1,
with the same two exact functions ϕ considered in the Section 4.1.

In Table 9, we observe that the RE
(

ϕ, ϕα(δ)

)
from solutions with regularization ϕα(δ)

are less than the RE(V, Vδ). For some values of N, β, and m given in this same table, we

can see that RE
(

ϕ, ϕα(δ)

)
and RE(ϕ, ϕδ) are of the same order, i.e., the solutions without

regularization ϕδ are close to regularized solutions ϕα(δ); however, the regularized solutions
ϕα(δ) are better than the solutions without regularization. The RE(ϕ, ϕδ) increases faster
than the RE(V, Vδ) starting at m = 3. Furthermore, we can observe similar results in

Table 10, where the RE
(

ϕ, ϕα(δ)

)
are of the same order as RE(V, Vδ) for m = 2, 3, 4, with

β = 0.5, δ = 0.1, except for m = 5, 6, . . . , 12. Nevertheless, the RE(ϕ, ϕδ) increases faster
than the RE(V, Vδ) starting at m = 5. For the values of m = 8, 9, 10, 11, and 12, the

RE
(

ϕ, ϕα(δ)

)
increases between 40% and 90%, but no more than RE(ϕ, ϕδ). In this case,

the TRM does not provide a good approximate solution to the IP. However, as mentioned
before, we could use the regularized solution ϕα(δ) as an initial point of an iterative method
to recover a better solution to the IP. Also, the relative errors of the recovered solutions
ϕδ without applying regularization increase suddenly, starting at m = 7 and m = 5
(see Tables 9 and 10) for the functions ϕ(x, y) = x2 − y2 and ϕ(x, y) = ex sin(y) for
(x, y) ∈ S1, respectively. Here also, as in the previous cases, the parameter of regularization
α(δ) changes depending on Vδ, N, m, and β.
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Table 9. Case 4: Numerical results applying TRM to solve the IP related to the fractional Cauchy
problem (12) for δ = 0.1 and different values of β and m, where ϕ(x, y) = x2 − y2, (x, y) ∈ S1.

N α(δ) β m RE(V,Vδ) RE(ϕ,ϕα(δ)) RE(ϕ,ϕδ)

20 1 × 10−4 0.5 2 0.1037 0.0369 0.0371
25 1 × 10−4 0.5 2 0.1043 0.0846 0.0850
30 1 × 10−4 0.5 2 0.1123 0.0947 0.0952
20 1 × 10−7 0.1 3 0.0953 0.0558 0.3293
20 1 × 10−5 0.8 3 0.0928 0.0397 0.1176
20 1 × 10−3 1.6 4 0.1031 0.0692 0.3781
20 1 × 100 2.9 4 0.0988 0.0550 0.2616
20 1 × 10−10 0.5 5 0.1063 0.0493 2.3272
20 1 × 10−2 3.5 5 0.1002 0.0479 0.6521
20 1 × 10−10 0.5 6 0.0824 0.0664 1.0640
20 1 × 10−3 3.4 6 0.1156 0.0541 1.0860
20 1 × 10−16 0.5 7 0.1093 0.0251 11.3550
20 1 × 10−5 4.2 7 0.0871 0.0203 4.0183
20 1 × 10−16 0.5 8 0.0915 0.0280 3.7583
20 1 × 10−6 3.7 8 0.1097 0.0212 4.3335
20 1 × 10−22 0.5 9 0.0969 0.0195 21.9486
20 1 × 10−6 5.2 9 0.0841 0.0345 9.1221
20 1 × 10−22 0.5 10 0.1022 0.0290 22.9009
20 1 × 10−5 7.6 10 0.1073 0.0181 7.2447
20 1 × 10−28 0.5 11 0.0936 0.0300 122.7548
20 1 × 10−8 6.6 11 0.0886 0.0121 91.7074
20 1 × 10−28 0.5 12 0.0926 0.0149 30.3739
20 1 × 10−8 6.3 12 0.1007 0.0329 36.2964

Table 10. Case 4: Numerical results applying TRM to solve IP related to the fractional Cauchy
problem (12) for δ = 0.1, β = 0.5 and different values of m, where ϕ(x, y) = ex sin(y), (x, y) ∈ S1.

N α(δ) β m RE(V,Vδ) RE(ϕ,ϕα(δ)) RE(ϕ,ϕδ)

20 1 × 10−4 0.5 2 0.1422 0.0274 0.0284
25 1 × 10−4 0.5 2 0.1537 0.0496 0.0551
30 1 × 10−4 0.5 2 0.1524 0.0585 0.0627
30 9 × 10−10 0.5 3 0.1619 0.1437 0.1438
30 5 × 10−8 0.5 4 0.1960 0.1656 0.2199
30 7 × 10−12 0.5 5 0.2014 0.1376 13.9836
30 4 × 10−12 0.5 6 0.2265 0.2261 8.6601
30 5 × 10−17 0.5 7 0.2419 0.2709 209.3490
30 5 × 10−17 0.5 8 0.2131 0.4002 205.2009
30 3 × 10−19 0.5 9 0.2154 0.8873 2.6220 × 103

30 1.4 × 10−19 0.5 10 0.2010 0.8863 4.1567 × 103

30 6 × 10−24 0.5 11 0.2148 0.9054 1.3299 × 105

30 3 × 10−24 0.5 12 0.2021 0.8935 1.6833 × 105

Figures 11 and 12 show the graphs of the exact measurement V and with error Vδ with
δ = 0.1, the graphs of the exact potential ϕ and its approximations ϕα(δ) (with regulariza-
tion) and ϕδ (without regularization), corresponding to the functions ϕ(x, y) = x2 − y2 and
ϕ(x, y) = ex sin(y) for (x, y) ∈ S1, respectively. In both cases, as mentioned in the previous
paragraph, the errors increase suddenly, starting at m = 7 for the first function and starting
at m = 5 for the second one, as can be seen in Figures 11b and 12b, where we can see the
ill-posedness of the IP if we do not apply regularization. For example, for the first function,

the relative error RE(ϕ, ϕδ) = 36.2964 is greater than RE
(

ϕ, ϕα(δ)

)
= 0.0329 for β = 6.3,
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m = 12, and y δ = 0.1 (see Table 9). For the second one, the RE(ϕ, ϕδ) = 205.2009 is

greater than RE
(

ϕ, ϕα(δ)

)
= 0.4002 for β = 0.5, m = 8, and δ = 0.1 (see Table 10).

In this case, we could use the regularized solution ϕα(δ) as an initial point of an iterative
method to recover a better solution to the IP.

Figure 11. (a) Exact measurement V (black line) and with error Vδ (red line). (b) Exact potential ϕ

and its approximations ϕα(δ) and ϕδ, corresponding to Example 1 for β = 6.3, m = 12, and δ = 0.1
(see Table 9). In this case, we take α(δ) = 10−8 and N = 20.

Figure 12. (a) Exact measurement V (black line) and with error Vδ (red line). (b) Exact potential ϕ

and its approximations ϕα(δ) and ϕδ, corresponding to Example 2 for β = 0.5, m = 8, and δ = 0.1
(see Table 10). In this case, we take α(δ) = 5 × 10−17 and N = 30.

4.2.5. Case 5: β < m − 1, When β Is Next to n or n − 1, Where 0 < n ≤ m − 1, for
m = 2, . . . , 12 and δ = 0.1

In this section, we consider the case when β < m − 1, when β is next to n or n − 1,
where 0 < n ≤ m − 1, for m = 2, . . . , 12 and δ = 0.1. Tables 11 and 12 show the relative
errors of the approximations ϕα(δ) and ϕδ when δ = 0.1 for the same two exact functions
ϕ considered in Section 4.1.

Table 11. Case 5: Numerical results applying TRM to solve the IP related to the fractional Cauchy
problem (12) for δ = 0.1 and different values of β and m, where ϕ(x, y) = x2 − y2, (x, y) ∈ S1.

N α(δ) β m RE(V,Vδ) RE(ϕ,ϕα(δ)) RE(ϕ,ϕδ)

20 1 × 10−4 0.1 2 0.0981 0.0294 0.0312
20 1 × 10−4 0.0001 2 0.0880 0.0665 0.0702
20 1 × 10−4 0.0000001 2 0.0877 0.0420 0.0436

20 1 × 10−2 0.9 2 0.0825 0.0252 0.0301
20 1 × 10−2 0.9999 2 0.0896 0.0355 0.0383
20 1 × 10−2 0.9999999 2 0.0988 0.0497 0.0524
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Table 11. Cont.

N α(δ) β m RE(V,Vδ) RE(ϕ,ϕα(δ)) RE(ϕ,ϕδ)

20 1 × 10−7 0.1 3 0.0984 0.0736 0.4041
20 1 × 10−7 0.0001 3 0.0988 0.0556 0.2586
20 1 × 10−7 0.0000001 3 0.1063 0.0633 0.5828

20 1 × 10−5 0.9 3 0.0824 0.0632 0.2671
20 1 × 10−4 0.9999 3 0.0940 0.0747 0.4997
20 5 × 10−5 0.9999999 3 0.0843 0.0582 0.2323

20 1 × 10−2 2.1 4 0.1133 0.0813 0.4297
20 1 × 100 2.9 4 0.1097 0.0494 0.2746
20 1 × 10−4 3.1 5 0.0841 0.0521 0.5721
20 1 × 10−1 3.9 5 0.0923 0.0284 0.9725
20 1 × 10−1 4.1 6 0.0982 0.0441 1.3912
20 1 × 101 4.9 6 0.1192 0.0261 0.2905
20 1 × 10−2 5.1 7 0.1027 0.0331 12.2005
20 1 × 100 5.9 7 0.0926 0.0324 2.2300

20 1 × 10−3 5.1 8 0.0928 0.0306 2.3248
20 1 × 10−3 5.0001 8 0.0936 0.0312 5.2064
20 1 × 10−18 5.0000001 8 0.1020 0.0174 1.3253

20 1 × 100 5.9 8 0.0967 0.0113 3.4116
20 1 × 100 5.9999 8 0.0946 0.0260 7.0605
20 1 × 10−15 5.9999999 8 0.0907 0.0275 1.9174

20 1 × 10−1 7.1 9 0.0849 0.0118 9.9754
20 1 × 100 7.9 9 0.0916 0.0224 16.5564
20 1 × 10−13 3.1 10 0.0930 0.0114 20.7949
20 1 × 10−11 3.9 10 0.1054 0.0197 31.4437
20 1 × 10−10 6.1 11 0.0978 0.0207 79.4649
20 1 × 10−7 6.9 11 0.1048 0.0109 59.7459
20 1 × 10−15 4.1 12 0.1035 0.0133 108.9786
20 1 × 10−12 4.9 12 0.0978 0.0278 131.9629

Table 12. Case 5: Numerical results applying TRM to solve the IP related to the fractional Cauchy
problem (12) for δ = 0.1 and different values of β and m, where ϕ(x, y) = ex sin(y), (x, y) ∈ S1.

N α(δ) β m RE(V,Vδ) RE(ϕ,ϕα(δ)) RE(ϕ,ϕδ)

30 1 × 10−5 0.1 2 0.1918 0.0633 0.0669
30 1 × 10−5 0.0001 2 0.1747 0.0510 0.0551
30 1 × 10−5 0.0000001 2 0.1932 0.0408 0.0466

30 1 × 10−3 0.9 2 0.1678 0.0267 0.0338
30 1 × 10−2 0.9999 2 0.1879 0.0538 0.0996
30 1 × 10−3 0.9999999 2 0.1757 0.0330 0.0352

30 7 × 10−9 0.1 3 0.2035 0.1269 0.3288
30 3 × 10−9 0.0001 3 0.1945 0.0741 0.2384
30 6 × 10−10 0.0000001 3 0.1863 0.2035 0.2102

30 7 × 10−7 0.9 3 0.2208 0.1301 0.2493
30 2 × 10−6 0.9999 3 0.2057 0.0770 0.2885
30 5 × 10−7 0.9999999 3 0.2013 0.1809 0.2036
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Table 12. Cont.

N α(δ) β m RE(V,Vδ) RE(ϕ,ϕα(δ)) RE(ϕ,ϕδ)

30 1 × 10−5 2.1 4 0.2001 0.1393 0.1397
30 3 × 10−2 2.9 4 0.1984 0.1061 0.2367
30 2 × 10−4 3.1 5 0.2106 0.2788 14.4371
30 6 × 10−3 3.9 5 0.1827 0.2914 6.9833
30 1 × 10−2 4.1 6 0.2299 0.3008 4.2311
30 5 × 10−1 4.9 6 0.1770 0.2723 3.9078
30 3 × 10−3 5.1 7 0.2095 0.1755 297.5818
30 5 × 10−2 5.9 7 0.1969 0.3580 51.0331

30 2 × 10−3 5.1 8 0.2424 0.2924 216.7317
30 3 × 10−3 5.0001 8 0.2004 0.3714 452.3457
30 1.4 × 10−3 5.0000001 8 0.1747 0.3650 239.9826

30 2 × 102 5.9 8 0.2001 0.3549 263.7365
30 1.3 × 10−1 5.9999 8 0.1829 0.3781 78.5332
30 5 × 10−1 5.9999999 8 0.2137 0.2490 311.6103

30 1.5 × 102 7.1 9 0.2263 0.8972 4.5033 × 103

30 1 × 104 7.9 9 0.2228 0.8943 4.3085 × 103

30 1 × 10−10 3.1 10 0.2658 0.8914 7.9703 × 103

30 8 × 10−8 3.9 10 0.2642 0.8948 5.5828 × 103

30 1 × 10−4 6.1 11 0.2378 0.9312 2.8572 × 105

30 5 × 10−3 6.9 11 0.2089 0.8950 5.1113 × 104

30 2 × 10−11 4.1 12 0.2311 0.8945 7.0888 × 104

30 4 × 10−9 4.9 12 0.1994 0.9057 7.9818 × 104

In Table 11, we observe that RE
(

ϕ, ϕα(δ)

)
< RE(V, Vδ). For m = 2, we can see

that RE
(

ϕ, ϕα(δ)

)
and RE(ϕ, ϕδ) are of the same order when β is next to 1 or 0 (taking

n = 1), i.e., the solutions without regularization ϕδ are close to regularized solutions
ϕα(δ). However, the regularized approximates ϕα(δ) are better than the solutions without

regularization. The RE
(

ϕ, ϕα(δ)

)
increases faster than the RE(V, Vδ) starting at m = 3, as

shown in Figure 13b for β = 0.0001, m = 3, and δ = 0.1, where RE
(

ϕ, ϕα(δ)

)
= 0.0556

and RE(ϕ, ϕδ) = 0.2586. These approximations, ϕα(δ) and ϕδ, are recovered from mea-
surements with error Vδ, shown in Figure 13a. Also, we can observe similar results in

Table 12, where RE
(

ϕ, ϕα(δ)

)
and RE(ϕ, ϕδ) are of the same order for m = 2, 3, 4, and

when β is next to n or n − 1 (taking n = 1, 1, and 3, respectively), for δ = 0.1, nevertheless

the RE
(

ϕ, ϕα(δ)

)
increases between 17% and 38%, but no more than the RE(ϕ, ϕδ) for

m = 5, 6, 7, and 8. For the values of m = 9, 10, 11, and 12, the RE
(

ϕ, ϕα(δ)

)
increases

around 90%, but no more than RE(ϕ, ϕδ). In this case, we could use the regularized so-
lution ϕα(δ) as an initial point of an iterative method to recover a better solution to the IP.
Nevertheless, the relative errors of the recovered solutions ϕδ without applying regular-
ization increase suddenly, starting at m = 7 and m = 5 (see Tables 11 and 12) for the
functions ϕ(x, y) = x2 − y2 and ϕ(x, y) = ex sin(y) for (x, y) ∈ S1, respectively. Here,
the regularization parameters α(δ) also change depending on Vδ, N, m, and β.

206



Fractal Fract. 2025, 9, 284

Figure 13. (a) Exact measurement V (black line) and with error Vδ (red line). (b) Exact potential ϕ and
its approximations ϕα(δ) and ϕδ, corresponding to Example 1 for β = 0.0001, m = 3, and δ = 0.1
(see Table 11). In this case, we take α(δ) = 10−7 and N = 20.

Figures 13–16 show the graphs of the exact measurement V and with error Vδ with
δ = 0.1, the graphs of the exact potential ϕ and its approximations ϕα(δ) (with regulariza-
tion) and ϕδ (without regularization), corresponding to the functions ϕ(x, y) = x2 − y2

and ϕ(x, y) = ex sin(y) for (x, y) ∈ S1, respectively. In both cases, as mentioned in the
previous paragraph, the errors increase suddenly, starting at m = 7 for the first function
and starting at m = 5 for the second one, as can be seen in Figure 14b, Figure 15b, and
Figure 16b, where we can see the ill-posedness of the IP if we do not apply regularization
for m = 12, 8, and m = 11, respectively. For example, for the approximations ϕδ and ϕα(δ)

shown in Figure 14b of the first function, the RE(ϕ, ϕδ) = 131.9629 is much greater than

RE
(

ϕ, ϕα(δ)

)
= 0.0278 for β = 4.9, m = 12, and δ = 0.1 (see Table 11). For the approxi-

mations ϕδ and ϕα(δ) shown in Figure 15b of the second one, the RE(ϕ, ϕδ) = 78.5332 is

much greater than RE
(

ϕ, ϕα(δ)

)
= 0.3781, for β = 5.9999, m = 8, and y δ = 0.1 (see

Table 12). Lastly, for the approximations ϕδ and ϕα(δ) shown in Figure 16b of the second

one, the RE(ϕ, ϕδ) = 2.8572 × 105 is greater than RE
(

ϕ, ϕα(δ)

)
= 0.9312 for β = 6.1,

m = 11, and δ = 0.1 (see Table 12). In these last two examples, when the approximate
solutions ϕα(δ) are not close to the exact solution ϕ, we could use the regularized solution
ϕα(δ) as an initial point of an iterative method to recover a better solution to the IP.

Figure 14. (a) Exact measurement V (black line) and with error Vδ (red line). (b) Exact potential ϕ

and its approximations ϕα(δ) and ϕδ, corresponding to Example 1 for β = 4.9, m = 12, and δ = 0.1
(see Table 11). In this case, we take α(δ) = 10−12 and N = 20.
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Figure 15. (a) Exact measurement V (black line) and with error Vδ (red line). (b) Exact potential ϕ and
its approximations ϕα(δ) and ϕδ, corresponding to Example 2 for β = 5.9999, m = 8, and δ = 0.1
(see Table 12). In this case, we take α(δ) = 1.3 × 10−1 and N = 30.

Figure 16. (a) Exact measurement V (black line) and with error Vδ (red line). (b) Exact potential ϕ

and its approximations ϕα(δ) and ϕδ, corresponding to Example 2 for β = 6.1, m = 11, and δ = 0.1
(see Table 12). In this case, we take α(δ) = 10−4 and N = 30.

4.2.6. Case 6: β > m, for m = 1, 2,. . .,13 and δ = 0.1

In this case, we consider the case when β > m, with m = 1, 2, . . . , 13. for δ = 0.1.
Tables 13 and 14 show the relative errors of the approximations ϕα(δ) and ϕδ when δ = 0.1
for the same two exact functions ϕ considered in Section 4.1.

Table 13. Case 6: Numerical results applying TRM to solve IP related to the fractional Cauchy
problem (12) for δ = 0.1 and different values of β and m, where ϕ(x, y) = x2 − y2, (x, y) ∈ S1.

N α(δ) β m RE(V,Vδ) RE(ϕ,ϕα(δ)) RE(ϕ,ϕδ)

20 1 × 10−6 1.001 1 0.0949 0.0430 0.0432
20 1 × 1014 1.5 1 0.0860 0.0825 0.0965
20 1 × 10−6 2.0001 2 0.0911 0.0574 0.0581
20 1 × 1032 3.1 2 0.0809 0.0783 0.0863
20 1 × 10−1 3.01 3 0.0894 0.0278 0.1076
20 1 × 1045 4.5 3 0.1048 0.0639 0.2370
20 1 × 105 4.1 4 0.0942 0.0294 0.1592
20 1 × 1095 7.1 4 0.1051 0.0495 0.2588
20 1 × 10−4 5.0001 5 0.0792 0.0298 1.3533
20 1 × 1033 6.1 5 0.0946 0.0165 0.4475
20 1 × 106 6.1 6 0.0907 0.0277 0.9987
20 1 × 1048 7.5 6 0.0867 0.0276 0.6014
20 1 × 105 7.1 7 0.0932 0.0109 3.5379
20 1 × 1050 8.6 7 0.1024 0.0131 3.1745
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Table 13. Cont.

N α(δ) β m RE(V,Vδ) RE(ϕ,ϕα(δ)) RE(ϕ,ϕδ)

20 1 × 101 8.001 8 0.1135 0.0277 2.2757
20 1 × 1046 9.4 8 0.0877 0.0180 3.6123
20 1 × 10−2 9.0001 9 0.0935 0.0163 22.9725
20 1 × 1053 10.7 9 0.0979 0.0342 3.1946
20 1 × 10−1 10.0001 10 0.1046 0.0345 50.3389
20 1 × 1049 11.5 10 0.0979 0.0179 12.7233
20 1 × 100 11.001 11 0.0834 0.0164 12.8627
20 1 × 1053 12.6 11 0.0915 0.0331 44.9837
20 1 × 101 12.0001 12 0.1136 0.0195 121.2423
20 1 × 1047 13.4 12 0.0822 0.0165 113.4837
20 1 × 101 11.5 13 0.0941 0.0155 420.7545
20 1 × 103 12.0001 13 0.0950 0.0280 319.2454
20 1 × 104 12.5 13 0.1188 0.0187 701.4226
20 1 × 101 12.9999 13 0.0925 0.0198 183.4905
20 1 × 1029 13.5 13 0.0938 0.0219 400.2461
20 1 × 1051 14.5 13 0.1112 0.0295 319.4336

Table 14. Case 6: Numerical results applying TRM to solve IP related to the fractional Cauchy
problem (12) for δ = 0.1 and different values of β and m, where ϕ(x, y) = ex sin(y), (x, y) ∈ S1.

N α(δ) β m RE(V,Vδ) RE(ϕ,ϕα(δ)) RE(ϕ,ϕδ)

30 3 × 10−5 1.001 1 0.1942 0.0575 0.1229
30 3 × 1013 1.5 1 0.1687 0.0687 0.0965
30 6 × 10−6 2.0001 2 0.1681 0.0606 0.1017
30 1 × 1032 3.1 2 0.1800 0.0660 0.0763
30 2 × 10−2 3.01 3 0.1855 0.1200 0.5139
30 5 × 1044 4.5 3 0.2034 0.1517 1.0728
30 3 × 103 4.1 4 0.1930 0.0226 0.3616
30 5 × 1093 7.1 4 0.2236 0.1517 0.4427
30 3.1 × 10−5 5.0001 5 0.2254 0.1550 13.8261
30 1.1 × 1032 6.1 5 0.2046 0.1057 3.5558
30 6.3 × 10−4 6.0001 6 0.1984 0.1863 8.7178
30 6.4 × 1046 7.5 6 0.2036 0.1233 4.9854
30 6.5 × 104 7.1 7 0.2188 0.3310 253.4635
30 4.4 × 1036 8.2 7 0.1844 0.2976 36.0590
30 3.4 × 10−4 8.00001 8 0.1944 0.4695 460.0541
30 1.1 × 1057 9.8 8 0.2512 0.4601 157.1510
30 3 × 101 9.0001 9 0.2299 0.8871 7.2299 × 103

30 5.1 × 1057 10.7 9 0.2143 0.8912 4.4110 × 103

30 5 × 102 10.0001 10 0.2151 0.8907 2.0204 × 104

30 1 × 1053 11.5 10 0.2191 0.8920 2.4527 × 103

30 6 × 103 11.0001 11 0.2632 0.8857 3.6429 × 105

30 9 × 1050 12.4 11 0.2290 0.9571 1.8509 × 105

30 1.3 × 105 12.0001 12 0.2451 0.9564 3.7314 × 105

30 2.1 × 1052 13.4 12 0.2211 0.9192 4.5936 × 105

30 5.9 × 1010 11.5 13 0.2168 0.9964 1.3190 × 107

30 5 × 1011 12.0001 13 0.2607 0.9994 1.0836 × 105

30 9 × 1011 12.5 13 0.2326 0.9904 1.0214 × 107

30 1.1 × 109 12.9999 13 0.2439 0.9890 1.3107 × 107

30 1.3 × 1029 13.5 13 0.2338 0.9895 5.7405 × 106

30 1.7 × 1059 14.5 13 0.2424 0.9899 1.3997 × 107
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In Table 13, we observe that RE
(

ϕ, ϕα(δ)

)
< RE(V, Vδ). For m = 1, 2, we can see

that RE
(

ϕ, ϕα(δ)

)
and RE(ϕ, ϕδ) are of the same order when δ = 0.1, i.e., the solutions

without regularization ϕδ are close to regularized solutions ϕα(δ). However, the regularized
approximates ϕα(δ) are better than the solutions without regularization. Additionally, the
relative errors of the solutions without regularization ϕδ increase faster, starting at m = 3.
Furthermore, we can observe similar results in Table 14. In this case, the relative errors from
solutions with regularization RE

(
ϕ, ϕα(δ)

)
are less than the RE(V, Vδ) for m = 1, 2, . . . , 6,

and increase between 29% and 46% for m = 7, 8, when δ = 0.1. Nevertheless, the
corresponding relative errors of the solutions with regularization increase between 88%
and 96% for m = 9, 10, 11, 12, but no more than the corresponding RE(ϕ, ϕδ). The relative
errors of the recovered solutions ϕδ without regularization increase suddenly, starting at
m ≥ 5. For example, for β = 10.7 and m = 9, the RE(ϕ, ϕδ) = 4.4110× 103. For m = 13,

the RE
(

ϕ, ϕα(δ)

)
increases between 91% and 99%, but no more than the RE(ϕ, ϕδ)), for

β > m, as well as for β < m and m − 1 < β < m with δ = 0.1. Moreover, as in the previous
cases, the regularization parameters α(δ) change depending on the data with error Vδ, the
values N, m, and β. Analogous results can be obtained for values m ≥ 14, as those obtained
for m = 13, which are not included in this work.

In the following two examples, we have considered non-smooth functions.

Example 3. We consider the ‘exact potential’ ϕ(x, y) =
√
(x2 + y2)− π/2, for (x, y) ∈ S1,

which in polar coordinates is given by ϕ(θ) = |θ|−π/2 , for θ ∈ [−π, π]. Resembling the first

example, the ‘exact measurement’ V and the ‘measurement with error’ Vδ are generated with the

first N terms of the Fourier series (22) and (23), respectively, such that ‖ ϕN−ϕ ‖L2(S1)
≤ ǫF, with

0 ≤ ǫF. For N = 30, ǫF = 0.0056. In this case, V0 = ϕ0 = 0 and the Fourier coefficients

ϕk, 1 ≤ k ≤ N, are obtained numerically using the intrinsic function quadl of MATLAB.

Table 15 shows the numerical results for data without error, applying TRM to solve
the IP of the classical Cauchy problem (2), where N = 20, 25, and 30. In this table, we
can observe similar results to the previous examples where the regularized solutions ϕα(δ)

are better.

Table 15. Numerical results applying TRM to solve the IP related to the classical Cauchy problem (2),
for ϕ(θ) = |θ|−π/2 , θ ∈ [−π, π] and different values of δ and N.

δ N α(δ) RE(V,Vδ) RE(ϕ,ϕα(δ)) RE(ϕ,ϕδ)

0.1 20 0.1 0.1080 0.1545 1.1839
0.1 25 0.1 0.0953 0.1314 2.1403
0.1 30 0.1 0.1342 0.1630 5.5998

0.01 20 0.01 0.0121 0.0409 0.1102
0.01 25 0.01 0.0114 0.0425 0.1676
0.01 30 0.01 0.0128 0.0370 0.5224

0.001 20 0.001 8.1891 × 10−4 0.0043 0.0046
0.001 25 0.001 9.1866 × 10−4 0.0088 0.0139
0.001 30 0.001 0.0014 0.0117 0.0557

Table 16 shows the numerical results for data without error, applying TRM to solve
the IP of the fractional Cauchy problem (12) for different values of β, m, and N.
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Table 16. Numerical results applying TRM to solve IP related to the fractional Cauchy problem (12)
for δ = 0.1 and different values of β and m, where ϕ(θ) = |θ|−π/2 , θ ∈ [−π, π].

N α(δ) β m RE(V,Vδ) RE(ϕ,ϕα(δ)) RE(ϕ,ϕδ)

20 2 × 10−3 0.5 1 0.3124 0.1870 0.2188
20 2 × 10−5 0.1 1 0.1347 0.1118 0.1121
20 1 × 10−2 0.9 1 0.1180 0.1919 0.2229
20 2 × 10−4 0.1 2 0.1524 0.0594 0.0974
20 1 × 10−3 1.1 2 0.1362 0.1985 0.1989
20 1 × 10−3 1.5 2 0.1047 0.2133 0.2141
20 4.7 × 100 1.9 2 0.2123 0.3425 1.3020
10 4.9 × 10−3 2.1 3 0.0523 0.2633 1.9458
10 5 × 10−3 2.5 3 0.0527 0.1430 0.3773
10 2.8 × 10−1 2.9 3 0.0495 0.2678 2.7599
10 2.1 × 100 3.5 4 0.0463 0.2386 1.8027
8 1 × 10−1 4.1 5 0.0397 0.4832 48.7338
8 4.2 × 10−1 4.5 5 0.0378 0.3875 24.7968
8 2.8 × 100 4.9 5 0.0269 0.4535 27.6306
8 1 × 102 5.9 6 0.0281 0.2041 23.2792
6 1 × 101 6.9 7 0.0207 0.2113 105.7357
6 7.2 × 101 7.1 8 0.0257 0.5941 280.7669
4 2.2 × 101 9.1 10 0.0416 0.2823 79.7393
4 3.3 × 100 10.1 11 0.0265 0.1181 1.4592 × 103

4 2.5 × 102 11.1 12 0.0306 0.1032 1.0285 × 103

4 2.2 × 102 12.5 13 0.0348 0.7974 1.0332 × 104

Figure 17a,b show the graphs of the exact potential ϕ and its approximations ϕα(δ)

(with regularization) and ϕδ (without regularization), corresponding to the function
ϕ(θ) = |θ|−π/2, for θ ∈ [−π, π], for different values of β, m, and N, respectively.

Figure 17. (a) Exact potential ϕ and its approximations ϕα(δ) and ϕδ, corresponding to Example 3 for
β = 1.9, m = 2, N = 20, and δ = 0.1. (b) Exact potential ϕ and its approximations ϕα(δ) and ϕδ,
corresponding to Example 3 for β = 11.1, m = 12, N = 4, and δ = 0.1 (see Table 16).

Example 4. We consider the ‘exact potential’ in polar coordinates given by ϕ(θ) = −1 if

θ ∈ [−π, 0) and 1 if θ ∈ [0, π]. Similar to the first example, the ‘exact measurement’ V and the

‘measurement with error’ Vδ are generated with the first N terms of the Fourier series (22) and (23),

respectively, such that ‖ ϕN−ϕ ‖L2(S1)
≤ ǫF, with 0 ≤ ǫF. For N = 30, ǫF = 0.2913. In this

case, V0 = ϕ0 = 0, and the Fourier coefficients ϕk, 1 ≤ k ≤ N, are obtained numerically using

the intrinsic function quadl of MATLAB.
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Table 17 shows the numerical results for data without error, applying TRM to solve
the IP of the classical Cauchy problem (2), where N = 20, 25, and 30. In this table, we
can observe similar results to the previous examples where the regularized solutions ϕα(δ)

are better.

Table 17. Numerical results applying TRM to solve the IP related to the classical Cauchy problem (2),
for ϕ(θ) = −1 if θ ∈ [−π, 0) and 1 if θ ∈ [0, π], and different values of δ and N.

δ N α(δ) RE(V,Vδ) RE(ϕ,ϕα(δ)) RE(ϕ,ϕδ)

0.1 20 0.1 0.0666 0.1608 0.7217
0.1 25 0.1 0.0638 0.1702 0.7641
0.1 30 0.1 0.0767 0.1827 2.6840

0.01 20 0.01 0.0080 0.0544 0.0659
0.01 25 0.01 0.0068 0.0761 0.0998
0.01 30 0.01 0.0078 0.0946 0.3552

0.001 20 0.0001 7.6172 × 10−4 0.0044 0.0048
0.001 25 0.0001 7.2529 × 10−4 0.0099 0.0118
0.001 30 0.0001 9.2391 × 10−4 0.0195 0.0353

Table 18 shows the numerical results for data without error, applying TRM to solve
the IP of the fractional Cauchy problem (12) for different values of β, m, and N.

Table 18. Numerical results applying TRM to solve IP related to the fractional Cauchy problem (12)
for δ = 0.1 and different values of β and m, where ϕ(θ) = −1 if θ ∈ [−π, 0) and 1 if θ ∈ [0, π].

N α(δ) β m RE(V,Vδ) RE(ϕ,ϕα(δ)) RE(ϕ,ϕδ)

20 4.5 × 10−2 0.5 1 0.1062 0.2731 1.9413
10 3.9 × 10−4 0.1 1 0.0645 0.0729 0.1759
10 3.2 × 10−3 0.5 1 0.0640 0.1624 0.2390
10 4 × 10−3 0.9 1 0.0609 0.0841 0.0934
10 2.1 × 10−2 1.2 2 0.0910 0.1530 0.1636
10 1.5 × 10−3 1.5 2 0.0549 0.2629 0.2699
6 2.1 × 10−2 2.5 3 0.0352 0.3415 1.3513
6 1.5 × 100 3.5 4 0.0523 0.5428 1.1704
6 1 × 103 4.2 5 0.0472 0.9410 88.1158
6 3.6 × 104 5.2 6 0.0483 0.9354 41.0394
6 1.5 × 107 7.2 8 0.0400 0.9343 1.7546 × 103

6 4.2 × 1016 12.8 13 0.0606 0.9825 2.1740 × 107

Figure 18a,b show the graphs of the exact potential ϕ and its approximations ϕα(δ)

(with regularization) and ϕδ (without regularization), corresponding to the function
ϕ(θ) = −1 if θ ∈ [−π, 0) and 1 if θ ∈ [0, π], for θ ∈ [−π, π], for different values of
β, m, and N, respectively.

Examples 3 and 4 show numerical results analogous to the previous examples for both
the classical and fractional cases. However, when we have piecewise constant functions,
we truncate the series of approximate solutions ϕα(δ) to find a better approximation of the
solution to the fractional Cauchy problem.
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Figure 18. (a) Exact potential ϕ and its approximations ϕα(δ) and ϕδ, corresponding to Example 4 for
β = 1.2, m = 2, N = 10, and δ = 0.1. (b) Exact potential ϕ and its approximations ϕα(δ) and ϕδ,
corresponding to Example 4 for β = 2.5, m = 3, N = 6, and δ = 0.1 (see Table 18).

4.3. Solution to the IP Related to the Fractional Cauchy Problem Morozov Discrepancy Method and
the Criterion of Tikhonov

In this subsection, the numerical results of the approximate solutions of the four exam-
ples presented above are calculated by the proposed method, choosing the regularization
parameter by Morozov’s discrepancy method and by the Tikhonov criterion. The relative
errors of the approximations given in Tables 19–26 show that the best approximate solutions
to the inverse problem are obtained by the L-curve criterion, as shown in Table 13, Table 14,
Table 16, and Table 18, taking the same values of N, α, β, and m from these same examples
for Tables 19–26, respectively.

Table 19. Numerical results choosing the regularization parameter α(δ) with the discrepancy principle
of Morozov to solve IP related to the fractional Cauchy problem (12) for δ = 0.1 and different values
of β and m, where ϕ(x, y) = x2 − y2, (x, y) ∈ S1. According to the results of the table and additional
experiments, the discrepancy method fails when β > (m + 1) and m > 1, as well as for some values
of β < (m − 1).

N α(δ) β m RE(V,Vδ) RE(ϕ,ϕα(δ)) RE(ϕ,ϕδ)

20 0.1613 1.001 1 0.0959 1.0470 0.0972
20 7.5089 × 106 1.5 1 0.0983 0.1328 0.1328
20 1.03 × 103 2.0001 2 0.0827 1.0000 0.0418
20 NaN 3.1 2 0.0870 NaN 0.0259
20 0.3137 3.01 3 0.0921 0.0526 0.1290
20 NaN 4.5 3 0.0994 NaN 0.4877
20 17.79 4.1 4 0.1069 0.5115 0.5102
20 NaN 7.1 4 0.0949 NaN 0.1675
20 6.53 × 107 5.0001 5 0.0901 1.0000 1.2477
20 NaN 6.1 5 0.0965 NaN 1.4885
20 4.7570 6.1 6 0.0860 1.9250 1.9237
20 NaN 7.5 6 0.0932 NaN 1.9387
20 0.2678 7.1 7 0.0922 6.1441 6.1514
20 NaN 8.6 7 0.0983 NaN 8.3501
20 0.0909 8.001 8 0.1113 0.0995 1.4459
20 NaN 9.4 8 0.0947 NaN 3.8687
20 0.1659 9.0001 9 0.0913 0.0497 9.9648
20 NaN 10.7 9 0.1018 NaN 21.7190
20 3.7653 × 10−5 10.0001 10 0.0818 23.2250 36.9474
20 NaN 11.5 10 0.0980 NaN 34.1752
20 3.1198 × 10−5 11.001 11 0.0828 50.0333 57.7211
20 NaN 12.6 11 0.0827 NaN 105.6237
20 1.0869 × 10−5 12.0001 12 0.0892 80.4548 94.1772
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Table 19. Cont.

N α(δ) β m RE(V,Vδ) RE(ϕ,ϕα(δ)) RE(ϕ,ϕδ)

20 NaN 13.4 12 0.0852 NaN 13.4034
20 NaN 11.5 13 0.0984 NaN 517.1635
20 5.1280 × 10−6 12.0001 13 0.1027 780.2431 783.2423
20 4.8277 × 10−5 12.5 13 0.1031 292.2405 293.0910
20 1.03160 × 10−6 12.9999 13 0.0971 148.1006 226.6417
20 3.4578 × 103 13.5 13 0.1041 597.4911 597.4911
20 NaN 14.5 13 0.0747 NaN 105.6650

Table 20. Numerical results choosing the regularization parameter α(δ) with the Tikhonov criterion
to solve IP related to the fractional Cauchy problem (12) for δ = 0.1 and different values of β and m,
where ϕ(x, y) = x2 − y2, (x, y) ∈ S1. Similar results have been obtained for other values of α using
this criterion.

N α(δ) β m RE(V,Vδ) RE(ϕ,ϕα(δ)) RE(ϕ,ϕδ)

20 δ
3
2 1.001 1 0.0994 0.9040 0.0769

20 δ
3
2 1.5 1 0.0965 0.0938 0.0938

20
1 +

1 = 2δ
99
50

2.0001 2 0.1046 0.9022 0.0702

20 δ 3.1 2 0.0984 0.1345 0.1345
20 δ 3.01 3 0.0812 0.0852 0.3750
20 δ

1
3 4.5 3 0.0862 0.3665 0.3665

20 δ
1

100 4.1 4 0.1050 0.3914 0.3914
20 δ 7.1 4 0.0971 0.8561 0.8561
20 δ

99
50 5.0001 5 0.0893 0.5591 1.5529

20 δ
99
50 6.1 5 0.0934 1.2559 1.2559

20 δ
1
3 6.1 6 0.0929 1.5055 1.5056

20 δ
1
2 7.5 6 0.0994 2.0076 2.0076

20 δ
99
50 7.1 7 0.0949 2.5857 2.5858

20 δ
99
50 8.6 7 0.0913 2.4924 2.4924

20 δ
1

100 8.001 8 0.0957 0.0431 5.6199

20 δ
1

100 9.4 8 0.0971 13.6930 13.6930

20 δ
1

10000 9.0001 9 0.0893 0.3169 24.8451

20 δ
1

10000 10.7 9 0.1057 8.4227 8.4227
20 δ 10.0001 10 0.1031 0.0334 25.1034
20 δ 11.5 10 0.0990 28.5194 28.5194
20 δ

99
10000 11.001 11 0.0834 0.0225 36.1203

20 δ
99

10000 12.6 11 0.0988 66.3421 66.3421

20 δ
1

100 12.0001 12 0.1022 0.0279 95.8910

20 δ
1

100 13.4 12 0.0926 31.8654 31.8654

20 δ
1

10000 11.5 13 0.1099 0.0552 457.5273

20 δ
1

10000 12.0001 13 0.1133 0.5851 438.2230

20 δ
1

10000 12.5 13 0.1097 4.5644 279.6731

20 δ
1

10000 12.9999 13 0.0982 0.0249 358.7193

20 δ
1

10000 13.5 13 0.0925 183.5626 183.5626

20 δ
1

10000 14.5 13 0.1027 789.7150 789.7150
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Table 21. Numerical results applying Morozov discrepancy principle to solve IP related to the
fractional Cauchy problem (12) for δ = 0.1 and different values of β and m, where ϕ(x, y) = ex sin(y),

(x, y) ∈ S1. According to the results, the discrepancy principle has problems when β > m + 1 and
m > 1, and for β = 1.001 and m = 1.

N α(δ) β m RE(V,Vδ) RE(ϕ,ϕα(δ)) RE(ϕ,ϕδ)

30 NaN 1.001 1 0.1245 NaN 0.0962
30 2.0984 × 106 1.5 1 0.1910 0.1082 0.1082
30 1.03 × 103 2.0001 2 0.0954 1.0000 0.0244
30 NaN 3.1 2 0.1075 NaN 0.0402
30 0.2289 3.01 3 0.1118 0.0657 0.4844
30 NaN 4.5 3 0.1218 NaN 1.4902
30 49.9604 4.1 4 0.1040 0.1739 0.1726
30 NaN 7.1 4 0.1200 NaN 0.3234
30 6.46 × 107 5.0001 5 0.1222 1.0000 1.5949
30 NaN 6.1 5 0.1098 NaN 1.8066
30 0.0725 6.0001 6 0.1133 0.1997 1.9133
30 NaN 7.5 6 0.1058 NaN 1.5889
30 0.1979 7.1 7 0.1126 8.3170 8.3243
30 NaN 8.2 7 0.1207 NaN 4.1606
30 0.0471 8.00001 8 0.1245 0.5043 5.9603
30 NaN 9.8 8 0.1132 NaN 6.3306
30 0.1675 9.0001 9 0.1027 0.0679 15.9717
30 NaN 10.7 9 0.0961 NaN 9.3670
30 0.8716 10.0001 10 0.0954 0.0099 5.1670
30 NaN 11.5 10 0.1075 NaN 8.4426
30 2.7508 × 10−8 11.0001 11 0.2068 5.0164 × 104 5.0171 × 104

30 NaN 12.4 11 0.1218 NaN 125.4177
30 6.7362 × 10−9 12.0001 12 0.2635 1.1476 × 105 1.1477 × 105

30 NaN 13.4 12 0.1200 NaN 82.7087
30 1.6116 × 10−10 11.5 13 0.2236 5.6345 × 106 5.6345 × 106

30 9.6113 × 10−8 12.0001 13 0.2251 3.6801 × 105 3.6801 × 105

30 3.7943 × 10−9 12.5 13 0.2458 3.2872 × 106 3.2872 × 106

30 1.2925 × 10−11 12.9999 13 0.2276 1.0450 × 107 1.0450 × 107

30 NaN 13.5 13 0.2413 NaN 8.8855 × 106

30 NaN 14.5 13 0.2454 NaN 9.6411 × 106

Table 22. Numerical results choosing the regularization parameter α(δ) with the Tikhonov criterion
to solve IP related to the fractional Cauchy problem (12) for δ = 0.1 and different values of β and m,
where ϕ(x, y) = ex sin(y), (x, y) ∈ S1. In almost all cases, the L-curve method gives better results.

N α(δ) β m RE(V,Vδ) RE(ϕ,ϕα(δ)) RE(ϕ,ϕδ)

30 δ 1.001 1 0.1760 0.9884 0.1546
30 δ

1
10000 1.5 1 0.1562 0.1227 0.1227

30 δ
99
50 2.0001 2 0.1783 0.9696 0.1104

30 δ
99
50 3.1 2 0.1806 0.0813 0.0813

30 δ
99
50 3.01 3 0.1774 0.4170 0.5684

30 δ
1

10000 4.5 3 0.1939 0.3294 0.3294

30 δ
1

10000 4.1 4 0.2089 0.6294 0.6294

30 δ
1

10000 7.1 4 0.2157 0.9195 0.9195

30 δ
99
50 5.0001 5 0.2132 0.9217 6.2925

30 δ
1

10000 6.1 5 0.1985 10.2345 10.2345

30 δ
99
50 6.0001 6 0.2047 0.8225 11.8088

30 δ
1

10000 7.5 6 0.1893 8.5339 8.5339

30 δ
1

10000 7.1 7 0.2272 66.4146 66.7074
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Table 22. Cont.

N α(δ) β m RE(V,Vδ) RE(ϕ,ϕα(δ)) RE(ϕ,ϕδ)

30 δ
1

10000 8.2 7 0.2041 65.2733 65.2733

30 δ
5
3 8.00001 8 0.1768 1.1965 97.2722

30 δ 9.8 8 0.1955 90.8875 90.8875
30 δ

5
3 9.0001 9 0.2093 2.2232 2.6794 × 103

30 δ
1

10000 10.7 9 0.2038 3.7798 × 103 3.7798 × 103

30 δ
1

10000 10.0001 10 0.2252 4.4215 7.1864 × 103

30 δ
1

100 11.5 10 0.2077 4.0842 × 103 4.0842 × 103

30 δ
1

100 11.0001 11 0.2059 80.7421 2.1991 × 105

30 δ
1

10000 12.4 11 0.2496 3.1294 × 105 3.1294 × 105

30 δ
1
2 12.0001 12 0.2130 93.2559 4.0135 × 105

30 δ
1
3 13.4 12 0.2228 3.0318 × 105 3.0318 × 105

30 δ
1

100 11.5 13 0.2128 785.0281 5.2143 × 106

30 δ
1
3 12.0001 13 0.2471 6.1257 × 103 2.1351 × 106

30 δ
1
8 12.5 13 0.2025 2.3802 × 105 1.0999 × 107

30 δ
1
50 12.9999 13 0.2472 583.7069 2.0067 × 107

30 δ
1

100 13.5 13 0.2477 1.8405 × 107 1.8405 × 107

30 δ
1

10000 14.5 13 0.2120 1.3707 × 107 1.3707 × 107

Table 23. Numerical results choosing the regularization parameter α(δ) with the discrepancy principle
of Morozov to solve IP related to the fractional Cauchy problem (12) for δ = 0.1 and different values
of β and m, where ϕ(θ) = |θ|−π/2 , θ ∈ [−π, π]. In almost all cases, the L-curve method gives
better results.

N α(δ) β m RE(V,Vδ) RE(ϕ,ϕα(δ)) RE(ϕ,ϕδ)

20 0.0320 0.5 1 0.2693 0.7013 0.3930
20 6.8073 0.1 1 0.2790 0.9988 0.2787
20 0.0595 0.9 1 0.2171 0.5500 0.2910
20 2.3795 0.1 2 0.2306 0.9972 0.3700
20 0.0297 1.1 2 0.2421 0.4419 0.6114
20 0.0993 1.5 2 0.1942 0.7216 0.7481
20 0.1561 1.9 2 0.2055 1.0241 1.0477
10 0.0079 2.1 3 0.0840 0.8154 1.8753
10 0.0096 2.5 3 0.0958 2.0322 2.6709
10 0.0122 2.9 3 0.0965 2.6035 2.8554
10 0.0231 3.5 4 0.0992 4.7034 4.7820
8 6.6817 × 10−5 4.1 5 0.0688 59.6092 61.4116
8 1.9688 × 10−4 4.5 5 0.0577 55.5120 56.1750
8 5.4635 × 10−4 4.9 5 0.0623 48.1493 48.4213
8 0.0013 5.9 6 0.0620 127.5673 127.6119
6 1.3725 × 10−4 6.9 7 0.0225 196.1122 196.3843
6 1.2394 × 10−4 7.1 8 0.0316 342.3864 342.5589
4 4.6244 × 10−4 9.1 10 0.0577 92.5918 92.7644
4 2.3783 × 10−6 10.1 11 0.0451 1.7044 × 103 1.7062 × 103

4 2.4299 × 10−5 11.1 12 0.0491 1.7439 × 103 1.7441 × 103

4 1.0631 × 10−6 12.5 13 0.0401 1.0360 × 104 1.0361 × 104
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Table 24. Numerical results choosing the regularization parameter α(δ) with the Tikhonov criterion
to solve IP related to the fractional Cauchy problem (12) for δ = 0.1 and different values of β and m,
where ϕ(θ) = |θ|−π/2 , θ ∈ [−π, π]. In almost all cases, the L-curve method gives better results.

N α(δ) β m RE(V,Vδ) RE(ϕ,ϕα(δ)) RE(ϕ,ϕδ)

20 δ
1
3 0.5 1 0.3117 0.9521 0.5185

20 δ
1
3 0.1 1 0.2942 0.9921 0.4911

20 δ
1
3 0.9 1 0.2614 0.7377 0.5011

20 δ
3
2 0.1 2 0.2944 0.9571 0.4833

20 δ
3
2 1.1 2 0.2224 0.5438 0.5251

20 δ
5
4 1.5 2 0.2703 0.7070 0.6965

20 δ 1.9 2 0.2060 0.9825 1.3020
10 δ

99
50 2.1 3 0.0105 0.1151 1.0675

10 δ
99
50 2.5 3 0.0790 1.7172 2.2671

10 δ
99
50 2.9 3 0.0935 2.4815 2.6475

10 δ
1
3 3.5 4 0.0992 3.7011 5.0290

8 δ
3
2 4.1 5 0.0725 2.3038 32.4249

8 δ
3
2 4.5 5 0.0822 26.8355 76.0308

8 δ
1
5 4.9 5 0.0696 7.6778 60.6948

8 δ
99

10000 5.9 6 0.0538 34.4968 43.7691

6 δ
99

10000 6.9 7 0.0418 25.5161 284.8013

6 δ
99
50 7.1 8 0.0514 414.7308 432.4166

4 δ
99
50 9.1 10 0.0432 39.8856 41.6149

4 δ
1

100 10.1 11 0.0440 2.1960 1.1303 × 103

4 δ
1

100 11.1 12 0.0485 306.1543 1.5216 × 103

4 δ
1

10000 12.5 13 0.0387 75.5346 4.6817 × 104

Table 25. Numerical results choosing the regularization parameter α(δ) with the discrepancy principle
of Morozov to solve IP related to the fractional Cauchy problem (12) for δ = 0.1 and different values
of β and m, where ϕ(θ) = −1 if θ ∈ [−π, 0) and 1 if θ ∈ [0, π]. In almost all cases, the L-curve
method gives better results. In this Table, m − 1 < β < m.

N α(δ) β m RE(V,Vδ) RE(ϕ,ϕα(δ)) RE(ϕ,ϕδ)

20 0.0084 0.5 1 0.1321 1.1988 1.4773
10 0.1198 0.1 1 0.0763 0.9065 0.3944
10 0.0480 0.5 1 0.0641 0.7212 0.2595
10 0.0292 0.9 1 0.0780 0.1942 0.2717
10 0.0556 1.2 2 0.0905 0.4162 0.4471
10 0.1325 1.5 2 0.0808 0.3404 0.2828
6 0.0026 2.5 3 0.0542 3.2590 3.8754
6 0.0184 3.5 4 0.0555 3.8072 3.8819
6 1.8758 × 10−4 4.2 5 0.0402 25.9293 27.2371
6 0.0016 5.2 6 0.0417 30.6892 30.8212
6 2.1013 × 10−5 7.2 8 0.0454 2.3159 × 103 2.3161 × 103

6 1.1443 × 10−9 12.8 13 0.0415 1.8147 × 107 1.8147 × 107

217



Fractal Fract. 2025, 9, 284

Table 26. Numerical results choosing the regularization parameter α(δ) with the Tikhonov criterion
to solve IP related to the fractional Cauchy problem (12) for δ = 0.1 and different values of β and m,
where ϕ(θ) = −1 if θ ∈ [−π, 0) and 1 if θ ∈ [0, π]. In almost all cases, the L-curve method gives
better results.

N α(δ) β m RE(V,Vδ) RE(ϕ,ϕα(δ)) RE(ϕ,ϕδ)

20 δ
5
4 0.5 1 0.1447 1.3444 2.7243

10 δ
3
2 0.1 1 0.0882 0.8467 0.3194

10 δ
3
2 0.5 1 0.0584 0.7281 0.5733

10 δ
99
50 0.9 1 0.0602 0.8434 0.3127

10 δ
99
50 1.2 2 0.0711 0.5848 0.5872

10 δ
99
50 1.5 2 0.0624 0.5957 0.6053

6 δ
3
2 2.5 3 0.0334 1.1740 1.6434

6 δ
1

10000 3.5 4 0.0602 1.1241 1.2573

6 δ
1
50 4.2 5 0.0437 1.0155 88.8735

6 δ
1

100 5.2 6 0.0551 23.6302 86.1879

6 δ
1

10000 7.2 8 0.0359 387.4002 1.4405 × 103

6 δ
1

10000 12.8 13 0.0425 2.0636 × 106 3.2829 × 107

5. Discussion

The numerical tests show that the proposed algorithm usually gives good results. Even
if the numerical results are unsatisfactory, they are enough to start an iterative method. In
all cases, the regularized method is worth more than the method without regularization.
After some numerical tests, we found that the series expansion of the solution to the
fractional Cauchy problem can be truncated in N = 20, N = 25, or N = 30.

When β < m for m = 1, 2 . . . , 7, the results obtained are similar, i.e., the results
obtained with and without regularization almost coincide. One possible explanation can
be associated with the smoothing properties of the integral operator to have similar results
when β > m, for m = 1, 2. In the other cases, the regularized case is better.

When m > 7, the regularized method loses precision. However, the approximate
solution obtained can be used as an initial point of a stable iterative method. From the
numerical results, we want to emphasize that the solution by the Tikhonov regularization
method of the classical Cauchy problem works adequately in all cases.

The Tikhonov regularization parameter was very large in some cases. We do not have
an explanation for this situation, but we consider this an interesting topic that must be
studied in future works. According to numerical results, in almost all cases, the best approx-
imate solutions to the inverse problem are obtained by the L-curve criterion. According to
the results, the discrepancy principle has problems when β > m + 1 and m > 1.

In the classical Cauchy problem, the adjoint operator is associated with a boundary
value problem called the adjoint problem. In the fractional Cauchy problem, we calculate
the adjoint operator using its definition. One interesting question is whether a boundary
value problem is associated with the adjoint operator. If the answer is positive, the following
question arises: Can the adjoint operator be used in irregular regions? This is an interesting
question whose answer can help us apply numerical methods to find the minimum of the
functional since we have to solve boundary value problems. One of the most used methods
to find such a minimum is the conjugate gradient method in combination with the finite
element method.
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6. Conclusions

This work proposes an algorithm to solve the fractional Cauchy problem obtained
from the Tikhonov regularization and the circular harmonics. The regularization was
obtained using the L-curve method, Morozov’s discrepancy principle, and numerical tests
by the Tikhonov criterion. The numerical results show that the algorithm is feasible for
various parameters. The discrepancy principle presents some problems in finding the
regularization parameter for some values of the parameters appearing in the fractional
Cauchy problem.

In almost all cases, the L-curve method gives better results than the Tikhonov Criterion
and Morozov’s discrepancy principle. In all cases, the regularization using the L-curve
method gives better results than without regularization. In some cases, despite not being
a good approximation, the regularized solution is much better than the solution without
regularization. Since the algorithm does not give good results in some cases, it must be
improved using an iterative method, which takes the regularized solution as an initial
point. This point might be future work.
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Appendix A. Computation of the Derivatives of Jα

If Jα(ϕ) = 1
2 ‖ K

β
m ϕ − Vδ ‖2

L2(S2)
+ α

2‖ ϕ ‖2
L2(S1)

, then
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Jα(ϕ + h)− Jα(ϕ) =
1
2
‖K

β
m(ϕ + h)− Vδ‖2

L2(S2)
+

α

2
‖ϕ + h‖2

L2(S1)
−
(

1
2
‖K

β
m ϕ − Vδ‖2

L2(S2)
+

α

2
‖ϕ‖2

L2(S1)

)

=
1
2
‖K

β
m(ϕ + h)− Vδ‖2

L2(S2)
− 1

2
‖K

β
m ϕ − Vδ‖2

L2(S2)
+

α

2
‖ϕ + h‖2

L2(S1)
− α

2
‖ϕ‖2

L2(S1)

=
1
2
〈Kβ

m ϕ − Vδ + K
β
mh, K

β
m ϕ − Vδ + K

β
mh〉L2(S2)

− 1
2
〈Kβ

m ϕ − Vδ, K
β
m ϕ − Vδ〉L2(S2)

+
α

2
〈ϕ + h, ϕ + h〉L2(S1)

− α

2
〈ϕ, ϕ〉L2(S1)

=
1
2

[
✭✭✭✭✭✭✭✭✭✭✭

〈Kβ
m ϕ − Vδ, K

β
m ϕ − Vδ〉L2(S2)

+ 〈Kβ
mh, K

β
mh〉L2(S2)

+ 〈Kβ
m ϕ − Vδ, K

β
mh〉L2(S2)

]

−
✭✭✭✭✭✭✭✭✭✭✭1
2
〈Kβ

m ϕ − Vδ, K
β
m ϕ − Vδ〉L2(S2)

+
1
2
〈Kβ

mh, K
β
m ϕ − Vδ〉L2(S2)

+
α

2

[
✟

✟
✟〈ϕ, ϕ〉+ 〈ϕ, h〉L2(S1)

+ 〈h, ϕ〉L2(S1)
+ 〈h, h〉L2(S1)

]
− α

2✘✘✘✘✘✘〈ϕ, ϕ〉L2(S1)

=
1
2
‖K

β
mh‖2

L2(S2)
+ 〈(Kβ

m)
∗(Kβ

m ϕ − Vδ), h〉L2(S1)
+ 〈αϕ, h〉L2(S1)

+
α

2
‖h‖2

L2(S1)

=
1
2
‖K

β
mh‖2

L2(S2)
+ 〈((Kβ

m)
∗K

β
m + αI)ϕ − (K

β
m)

∗Vδ, h〉L2(S1)
+

α

2
‖h‖2

L2(S1)

Thus, DJα(ϕ) =
((

K
β
m

)∗
K

β
m + αI

)
ϕ −

(
K

β
m

)∗
Vδ. For the second derivative, we have

DJα(ϕ + h)− DJα(ϕ) = ((K
β
m)

∗K
β
m + αI)(ϕ + h)− (K

β
m)

∗Vδ − [((K
β
m)

∗K
β
m + αI)ϕ − (K

β
m)

∗Vδ]

=✭✭✭✭✭✭✭✭

((K
β
m)

∗K
β
m + αI)ϕ + ((K

β
m)

∗K
β
m + αI)h −✘✘✘✘

(K
β
m)

∗Vδ − [✭✭✭✭✭✭✭✭

((K
β
m)

∗K
β
m + αI)ϕ −✘✘✘✘

(K
β
m)

∗Vδ]

= ((K
β
m)

∗K
β
m + αI)h.

Hence, D2 Jα(ϕ) =
(

K
β
m

)∗
K

β
m + αI.

Appendix B. Proof That the Functional Jα

(f ) = 1
2‖ K

β
m( f )− Vδ ‖

2

L2(S2)L2(S2)
+ α

2‖ f ‖2
L2(S1)

Is Convex

Theorem A1. The functional

J1( f ) =
α

2
‖ f ‖2

L2(S1)

is convex.

Proof. We want to show that

J1(λ f + (1 − λ)g) ≤ λJ1( f ) + (1 − λ)J1(g),

for all f , g ∈ L2(S1), with f �= g, and for all λ ∈ (0, 1).
Starting with the left-hand side,

J1(λ f + (1 − λ)g)=
α

2
‖ λ f + (1 − λ)g ‖2

L2(S1)

=
α

2
〈λ f + (1 − λ)g, λ f + (1 − λ)g〉L2(S1)

=
α

2
〈λ f , λ f 〉L2(S1)

+ α〈λ f , (1 − λ)g〉L2(S1)

+
α

2
〈(1 − λ)g, (1 − λ)g〉L2(S1)

=
α

2
λ2‖ f ‖2 + αλ(1 − λ)〈 f , g〉L2(S1)

+
α

2
(1 − λ)2‖ g ‖2

L2(S1)
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By the Cauchy–Schwarz inequality:

|〈 f , g〉 L2(S1)
|≤‖ f ‖ L2(S1)

‖ g ‖L2(S1)
, ∀ f �= g

we obtain
J1(λ f + (1 − λ)g)≤ λ2 α

2
‖ f ‖2

L2(S1)
+ (1 − λ)2 α

2
‖ g ‖2

L2(S1)

+αλ(1 − λ) ‖ f ‖L2(S1)
‖ g ‖L2(S1)

Applying the inequality: a·b ≤ a2+b2

2 , if a, b ∈ R. Considering that a = || f ||L2(S1)
and

b = ||g||L2(S1)
, then,

αλ(1 − λ)|| f ||L2(S1)
||g||L2(S1)

≤ αλ(1 − λ)
1
2

[
|| f ||2L2(S1)

+ ||g||2L2(S1)

]

Then

J1(λ f + (1 − λ)g)≤ λ2 α

2
|| f ||2L2(S1)

+ (1 − λ)2 α

2
||g||2L2(S1)

+ λ(1 − λ)
α

2

[
|| f ||2L2(S1)

+ ||g||2L2(S1)

]

= λ2 α

2
|| f ||2L2(S1)

+
(

1 − 2λ + λ2
)α

2
||g||2L2(S1)

+
(

λ − λ2
)α

2

[
|| f ||2L2(S1)

+ ||g||2L2(S1)

]

= λ2 α

2
|| f ||2L2(S1)

+
α

2
||g||2L2(S1)

− λα||g||2L2(S1)
+ λ2 α

2
||g||2L2(S1)

+ λ
α

2
|| f ||2

+λ
α

2
||g||2L2(S1)

− λ2 α

2
|| f ||2L2(S1)

− λ2 α

2
||g||2L2(S1)

= λ
α

2
|| f ||2L2(S1)

+
α

2
||g||2L2(S1)

− λ
α

2
||g||2L2(S1)

= λ
α

2
|| f ||2L2(S1)

+ (1 − λ)
α

2
||g||2L2(S1)

= λJ1( f ) + (1 − λ)J1( f ).

Therefore, J1( f ) = α
2 (|| f ||2L2(S1)

is convex. �

Theorem A2. The functional

J2( f ) =
1
2
‖ K

β
m( f )− Vδ ‖

2

L2(S2)

is convex.

Proof. Assuming the operator K
β
m is linear, we have

J2(λ f + (1 − λ)g)=
1
2
‖ K

β
m(λ f + (1 − λ)g)− Vδ ‖

2

L2(S2)

=
1
2
‖ λ

(
K

β
m( f )− Vδ

)
+ (1 − λ)

(
K

β
m(g)− Vδ

)
‖

2

L2(S2)

=
λ2

2
‖ K

β
m( f )− Vδ ‖2

L2(S2)
+
(1 − λ)2

2
‖ K

β
m(g)− Vδ ‖

2

L2(S2)

+λ(1 − λ)
〈

K
β
m( f )− Vδ, K

β
m(g)− Vδ

〉
L2(S2)

,

where λ ∈ (0, 1).
By the Cauchy–Schwarz inequality:

〈
K

β
m( f )− Vδ, K

β
m(g)− Vδ

〉
L2(S2)

≤‖K
β
m( f )− Vδ ‖L2(S2)

‖ K
β
m(g)− Vδ ‖L2(S2)
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and using the inequality ab ≤ 1
2

(
a2 + b2

)
if a, b ∈ R. Considering that a = ‖K

β
m( f ) −

Vδ ‖L2(S2)
and b = ‖K

β
m(g)− Vδ ‖L2(S2)

, we obtain

λ(1 − λ)
〈

K
β
m( f )− Vδ, K

β
m(g)− Vδ

〉
L2(S2)

≤ λ(1 − λ)

2

(
‖ K

β
m( f )− Vδ ‖2

L2(S2)
+‖ K

β
m(g)− Vδ ‖

2

L2(S2)

)

Combining these results,

J2(λ f + (1 − λ)g)≤ λ2

2
‖ K

β
m( f )− Vδ ‖2

L2(S2)
+
(1 − λ)2

2
‖ K

β
m(g)− Vδ ‖

2

L2(S2)

+
λ(1 − λ)

2

(
‖ K

β
m( f )− Vδ ‖2

L2(S2)
+‖ K

β
m(g)− Vδ ‖

2

L2(S2)

)

=
λ

2
‖ K

β
m( f )− Vδ ‖2

L2(S2)
+

1 − λ

2
‖ K

β
m(g)− Vδ ‖

2

L2(S2)

= λJ2( f ) + (1 − λ)J2(g).

Therefore, J2( f ) = 1
2‖ K

β
m( f )− Vδ ‖

2

L2(S2)
is convex. �

Thus, from the last two theorems, we have that the functional Jα( f ) = 1
2 ‖ K

β
m( f )−

Vδ ‖2
L2(S2)

+ α
2‖ f ‖2

L2(S1)
is convex.

References

1. Conde Mones, J.J.; Juárez Valencia, L.H.; Oliveros Oliveros, J.J.; León Velasco, D.A. Stable numerical solution of the Cauchy
problem for the Laplace equation in irregular annular regions. Numer. Methods Partial Differ. Equ. 2017, 33, 1799–1822. [CrossRef]

2. Oliveros, J.; Morín, M.; Conde, J.; Fraguela, A. A regularization strategy for the inverse problem of identification of bioelectrical
sources for the case of concentric spheres. Far East J. Appl. Math. 2013, 77, 1–20.

3. Lee, J.Y.; Yoon, J.R. A numerical method for Cauchy problem using singular value decomposition. Commun. Korean Math. Soc.

2001, 16, 487–508.
4. Wei, T.; Chen, Y.G. A regularization method for a Cauchy problem of Laplace’s equation in an annular domain. Math. Comput.

Simul. 2012, 82, 2129–2144. [CrossRef]
5. Zhou, D.; Wei, T. The method of fundamental solutions for solving a Cauchy problem of Laplace’s equation in a multi-connected

domain. Inverse Probl. Sci. Eng. 2008, 16, 389–411. [CrossRef]
6. Chang, J.R.; Yeih, W.; Shieh, M.H. On the modified Tikhonov’s regularization method for the Cauchy problem of the Laplace

equation. J. Mar. Sci. Technol. 2001, 9, 113–121. [CrossRef]
7. Gong, X.; Yang, S. A local regularization scheme of Cauchy problem for the Laplace equation on a doubly connected domain.

Bound. Value Probl. 2023, 2023, 30. [CrossRef]
8. Cheng, J.; Hon, Y.C.; Wei, T.; Yamamoto, M. Numerical computation of a Cauchy problem for Laplace’s equation. ZAMM-J. Appl.

Math. Mech. Angew. Math. Mech. Appl. Math. Mech. 2001, 81, 665–674. [CrossRef]
9. Borachok, I.; Chapko, R.; Tomas Johansson, B. Numerical solution of a Cauchy problem for Laplace equation in 3-dimensional

domains by integral equations. Inverse Probl. Sci. Eng. 2016, 24, 1550–1568. [CrossRef]
10. Hào, D.N.; Lesnic, D. The Cauchy problem for Laplace’s equation via the conjugate gradient method. IMA J. Appl. Math. 2000, 65,

199–217. [CrossRef]
11. Caubet, F.; Dardé, J.; Godoy, M. On the data completion problem and the inverse obstacle problem with partial Cauchy data for

Laplace’s equation. ESAIM Control Optim. Calc. Var. 2019, 25, 30. [CrossRef]
12. Amdouni, S.; Ben Abda, A. The Cauchy problem for Laplace’s equation via a modified conjugate gradient method and energy

space approaches. Math. Methods Appl. Sci. 2023, 46, 3560–3582. [CrossRef]
13. León-Velasco, A.; Glowinski, R.; Juárez-Valencia, L.H. On the controllability of diffusion processes on the surface of a torus: A

computational approach. Pac. J. Optim. 2015, 11, 763–790.
14. Conde Mones, J.J.; Estrada Aguayo, E.R.; Oliveros Oliveros, J.J.; Hernández Gracidas, C.A.; Morín Castillo, M.M. Stable

identification of sources located on interface of nonhomogeneous media. Mathematics 2021, 9, 1932. [CrossRef]
15. Berntsson, F.; Lars, E. Numerical solution of a Cauchy problem for the Laplace equation. Inverse Probl. 2001, 17, 839–853.

[CrossRef]
16. Kress, R. Inverse Dirichlet problem and conformal mapping. Math. Comput. Simul. 2004, 66, 255–265. [CrossRef]

222



Fractal Fract. 2025, 9, 284

17. Clerc, M.; Kybic, J. Cortical mapping by Laplace-Cauchy transmission using a boundary element method. Inverse Probl. 2007, 23,
2589–2601. [CrossRef]

18. Denisov, A.M.; Zakharov, E.V.; Kalinin, A.V.; Kalinin, V.V. Numerical solution of an inverse electrocardiography problem for a
medium with piecewise constant electrical conductivity. Comput. Math. Math. Phys. 2010, 50, 1172–1177. [CrossRef]

19. Kalinin, A.; Potyagaylo, D.; Kalinin, V. Solving the inverse problem of electrocardiography on the endocardium using a single
layer source. Front. Physiol. 2019, 10, 58. [CrossRef]

20. Ruiz de Miras, J.; Derchi, C.-C.; Atzori, T.; Mazza, A.; Arcuri, P.; Salvatore, A.; Navarro, J.; Saibene, F.L.; Meloni, M.; Comanducci,
A. Spatio-Temporal Fractal Dimension Analysis from Resting State EEG Signals in Parkinson’s Disease. Entropy 2023, 25, 1017.
[CrossRef]

21. Sirpal, P.; Sikora, W.A.; Refai, H.H.; Yang, Y. Association between Opioid Dependence and Scale Free Fractal Brain Activity: An
EEG Study. Fractal Fract. 2023, 7, 659. [CrossRef]

22. Perez-Sanchez, A.V.; Valtierra-Rodriguez, M.; Perez-Ramirez, C.A.; De-Santiago-Perez, J.J.; Amezquita-Sanchez, J.P. Epileptic
Seizure Prediction Using Wavelet Transform, Fractal Dimension, Support Vector Machine, and EEG Signals. Fractals 2022, 30,
2250154. [CrossRef]

23. Karaoulanis, D.; Lazopoulou, N.; Lazopoulos, K. On A-Fractional Derivative and Human Neural Network. Axioms 2023, 12, 136.
[CrossRef]

24. Turmetov, B.K.; Nazarova, K.D. On a generalization of the Neumann problem for the Laplace equation. Math. Nachrichten 2019,
293, 169–177. [CrossRef]

25. Kadirkulov, B.J.; Kirane, M. On solvability of a boundary value problem for the Poisson equation with a nonlocal boundary
operator. Acta Math. Sci. 2015, 35B, 970–980. [CrossRef]

26. Kirsch, A. An Introduction to the Mathematical Theory of Inverse Problems, 2nd ed.; Springer: New York, NY, USA, 2011; Volume 120,
Applied Mathematical Sciences.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

223



Academic Editor: António Lopes

Received: 4 December 2024

Revised: 7 January 2025

Accepted: 21 January 2025

Published: 26 January 2025

Citation: Danca, M.-F. On a

Preloaded Compliance System of

Fractional Order: Numerical

Integration. Fractal Fract. 2025, 9, 84.

https://doi.org/10.3390/

fractalfract9020084

Copyright: © 2025 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

On a Preloaded Compliance System of Fractional Order:
Numerical Integration

Marius-F. Danca

STAR-UBB Institute, Babes-Bolyai University, 400084 Cluj-Napoca, Romania; m.f.danca@gmail.com

Abstract: In this paper, the use of a class of fractional-order dynamical systems with discon-
tinuous right-hand side defined with Caputo’s derivative is considered. The existence of the
solutions is analyzed. For this purpose, differential inclusions theory is used to transform,
via the Filippov regularization, the discontinuous right-hand side into a set-valued function.
Next, via Cellina’s Theorem, the obtained set-valued differential inclusion of fractional
order can be restarted as a single-valued continuous differential equation of fractional order,
to which the existing numerical schemes for fractional differential equations can be applied.
In this way, the delicate problem of integrating discontinuous problems of fractional order,
as well as integer order, is solved by transforming the discontinuous problem into a contin-
uous one. Also, it is noted that even the numerical methods for fractional-order differential
equations can be applied abruptly to the discontinuous problem, without considering the
underlying discontinuity, so the results could be incorrect. The technical example of a
single-degree-of-freedom preloaded compliance system of fractional order is presented.

Keywords: switch dynamical systems of fractional order; Caputo’s derivative; fractional
differential equations

1. Introduction

Generally, integer-order (IO) systems with a discontinuous right-hand side are mostly
ideal due to the presence of switch-type functions like sgn or Heaviside H. Discontinuity
can generally be found in two-dimensional mechanical systems: oscillating systems com-
bined with dry and viscous damping; systems with dry friction; systems with stick and
slip modes, forced vibrations, brake processes with locking phases, control synthesis for
uncertain systems, and elastoplasticity; and in control theory, game theory, optimization,
calculus of variations, physiological, biological systems, electrical (chaotic) circuits, com-
plex networks, power electronics, etc. (see [1], the workshop on the “Nonlinear Dynamics
of Mechanical Systems”, an attempt to give a standard textbook devoted to nonlinear
dynamical systems with discontinuities).

It is important to note that there are two main strategies to approach numerically
discontinuous systems of IO: the first one is to ignore the discontinuities (“time stepping”
methods) and to rely on a local error estimator such that the error remains acceptably small;
the other strategy is to determine a scalar event function defining the discontinuity. In this
way, the intersection point serves as the new starting point for continuing the numerical
solution (“event-driven” methods).

To integrate discontinuous Ordinary Differential Equations (ODEs) of IO, there are
dedicated numerical methods (see [1,2]). However, it is important to note that numerical
methods for discontinuous systems could be either inaccurate or even inefficient in the

Fractal Fract. 2025, 9, 84 https://doi.org/10.3390/fractalfract9020084
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region of the discontinuity. Also, the error analysis often fails if there is not sufficient
local smoothness.

On the other hand, in recent years, FO dynamical systems have received increasing
attention due to their broad range of applications, such as real-life applications, [3], vis-
coelastic materials [4], control engineering [5], fractional electrical circuits [6], chaotic FO
dynamical systems [7,8], and Lyapunov exponents of FO systems [9]. Fractional differential
equations are presented in [10], while for a review of definitions of fractional derivatives,
see [11].

FO models can describe complex physics problems more clearly and concisely com-
pared with their IO variant.

Therefore, considering the FO variants of discontinuous is a subject of interest. Most
known examples of discontinuous systems are defined as IO. In this paper, we consider
their FO variants, a fact that could represent a novel approach. For this purpose, by using
the differential inclusions theory, the problem modeling the underlying discontinuous
problem is transformed into a continuous one.

The manuscript is organized as follows: Section 2 introduces the class of switch dy-
namical systems of IO. Section 3 deals with a class of discontinuous dynamical systems of
FO, discusses notions and results on differential inclusions used to transform a discontinu-
ous problem into a continuous one and considers the preloaded compliance system of FO.
Special attention is paid to the correctness of the numerical integration of underlying IVP.
This paper ends with the Conclusion Section.

2. Switch Dynamical Systems of IO

The class of systems analyzed in this paper, with a discontinuous right-hand side
(Piece-Wise Continuous (PWC), see Definition 1), usually called “switch” or “relay systems”,
are modeled by the following discontinuous with respect to the state variable, autonomous
Initial Value Problem (IVP):

ẋ = f (x) := g(x) + As(x), x(0) = x0, t ∈ I = [0, T], (1)

where g : Rn → Rn is a nonlinear Lipschitz continuous function and s : Rn → Rn is
a piecewise function with piecewise constant components si : R → R, usually sgn or
Heaviside H(x) = (1 + sgn (x))/2. T ∈ R, T > 0, and the real matrix A ∈ Rn×n is
supposed to have at least one nonzero element.

The considered system, briefly described below, which comes from real applications
and is called a preloaded compliance system with a single degree of freedom [1], is modeled
by the following IVP:

mÿ + cẏ + h(y) = P cos ωt, y(0) = y0, ẏ(0) = y1, (2)

where m is the mass of the system, k is the stiffness and c is the viscous damping coefficient
(see Figure 1a). The restoring force that has discontinuity at y = 0, where its value is 2ky0,
the segment of the values at the discontinuity point, [−ky0, ky0] (presented in [12]), will
be rigorously studied in Section 3. The system is excited by the periodic external force
P cos ωt. The preloaded force ky0 is defined by the function (Figure 1b)

h(y) =

⎧
⎨
⎩

k(y + y0), y ≥ 0

k(y − y0), y ≤ 0

which outlines the switch character of the system.
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Figure 1. (a) A model of the preloaded system (3); (b) the characteristic of the restoring force f ; (c) a
graph of the approximate function hε.

With the change in the variables x = y/y0 and τ = ωnt, after some notations and
substitutions (see the details in [12]), the dimensionless form of the system (2) becomes

ẍ + 2γẋ + h(x) = P cos ντ, (3)

where h(x), after the mentioned substitutions, has the following form:

h(x) =

⎧
⎨
⎩

x + 1, y ≥ 0,

x − 1, y ≤ 0,
(4)

which can be written as h(x) = x + sgn(x).
Finally, the standard form of the preloaded compliance system (3) becomes

ẋ1 = x2,

ẋ2 = −2γx1 − x1 − sgn (x1) + P cos(x3), x(0) = x0.

ẋ3 = ν.

(5)

As can be seen, the system is in the form of the general switch system (1) with

A =

⎛
⎜⎝

0 0 0
−1 0 0
0 0 0

⎞
⎟⎠, g(x) =

⎛
⎜⎝

x2

−2γ − x1 + P cos(x3)

ν

⎞
⎟⎠, s(x) =

⎛
⎜⎝

sgn(x1)

sgn(x2)

sgn(x3)

⎞
⎟⎠.

The dynamics of the system are presented in [1] and are not considered here.
A few other switch dynamical systems are presented in Table 1. Note that the presence

of the term x1sgn(x1) in the function g of the variant of the Shimizu–Morioka system [13]
(see Table 1) does not affect the continuity of g.
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Table 1. Examples of switch dynamical systems of IO modeled by the IVP (1).

System Equations g(x) A

Steam turbine [14]
ẋ1 = p(x3 − x1 + sgn(x2)),
ẋ2 = x1 − x2,
ẋ3 = −x2

⎛
⎝

px3 − px1
x1 − x2
−x2

⎞
⎠

⎛
⎝

0 p 0
0 0 0
0 0 0

⎞
⎠

Sprott system [15]
ẋ1 = x2,
ẋ2 = x3,
ẋ3 = −x1 − x2 − x3 + psgn(x3)

⎛
⎝

x2
x3

−x1 − x2 − x3

⎞
⎠

⎛
⎝

0 0 0
0 0 0
0 0 p

⎞
⎠

Shimizu–Morioka [13]
system

ẋ1 = x2,
ẋ2 = (1 − x1)sgn(x1)− p1x2,
ẋ3 = x2

1 − p2x3

⎛
⎝

x2
−x1sgn(x1)− p1x2

x2
1 − p2x3

⎞
⎠

⎛
⎝

0 0 0
1 0 0
0 0 0

⎞
⎠

Due to the broad range of applications of fractional calculus in real-life applications and
in diverse and widespread fields of engineering and science [16], considering the fractional
approaches of some systems like switch systems represents an open research direction.

3. Switch Dynamical Systems of FO

Considering the FO counterpart of the PWC systems, the counterpart of the au-
tonomous systems modeled by the IVP (1) is as follows:

D
q
∗x = f (x) := g(x) + A(x)s(x), x(0) = x0, t ∈ I = [0, T], (6)

where g and A are described in Section 2 and the Caputo derivative is considered, as in
usual examples, with a lower limit t = 0 as follows:

D
q
∗x(t) =

1
Γ(n − q)

∫ t

0
(t − τ)n−q−1x(n)τdτ

where for x : [0, T] → R, q ∈ (m − 1, m), m ∈ Z+ is a smooth enough function, and
x(n) is the classical derivative of the integer order n. Even more restrictive compared to
other fractional-order derivatives, Caputo’s derivative with a lower limit of 0 has the great
advantage of using the initial conditions, like for IO systems, making it fully justified in
practical examples.

One of the main restrictions on the numerical implementation of fractional derivatives
is the memory-dependent characteristic, i.e., every state variable depends on all previously
calculated values. Due to this effect, integration is time-consuming. On the other hand,
the variation in real systems where the instantaneous change rate depends on the past state
can be better described by the memory effect. In this context, with its entire (full) mem-
ory effect, Caputo’s derivative describes better the real dynamics of an FO system but to
the detriment of the integration time (see e.g., [17]. Compared with Caputo’s derivative,
the Gründwald–Letnikov derivative, which is the basic extension of the derivative in frac-
tional calculus [18], follows the short memory principle, and its numerical implementation
offers a relatively short time integration in numerical problems.

In this paper, the Adams–Bashforth–Moulton (ABM) method is used [19].
As observed in the previous sections, discontinuous ODEs and FDEs might not have

classical solutions. Therefore, even though the dedicated numerical methods used to solve
ODEs, as well as FDEs, can be used directly to integrate such problems, the numerical
results can be wrong, as stated by the following example:

Consider the IVP

D
q
∗x = f (x) := 2 − 3sgn(x), x(0) = x0. (7)
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For t ∈ [0, ∞), there are no solutions in the classical sense that start from x0. If
x0 = 0, the right-hand side of the equation D

q
∗(0) = 0 is different from the right-hand side

2 − sgn(0) = 2. In the case of x0 > 0, there is the solution x(t) = x0 − tq/Γ(1 + q), defined
only on the interval [0, T′), T′ = (Γ(1 + q)x0)

1/q. This solution cannot be extended over a
larger interval [0, T′). If x0 < 0, there is the solution x(t) = x0 + 5tq/Γ(1 + q), defined only
on [0, T′′), with T′′ = (Γ(1 + q)x0/5)1/q. Both these solutions tend toward the line x = 0,
but they cannot extend along this line x = 0, whose equation, x(t) = 0, does not verify the
equation (in Figure 2a, the cases q = 0.8 with x0 = ±1 are presented). Note that by using a
numerical method to solve this FDE, it is possible to obtain some numerical solutions even
for t > T′, T′′, but they could be incorrect since we cannot verify the equation for t ∈ [0, ∞).
This aspect will be analyzed below. Therefore, a special approach for solutions to FDEs
is required.

Figure 2. (a) Nonclassical solutions of the IVP (7), existing for t < T′, T′′; (b) a graph of the exact
solution of the discontinuous FO problem (7) with x0 >, on [0, T′], with T′ = 0.0505 (black plot), the
solution of the approximated problem (16) (blue plot), and the solution of the discontinuous IVP
(7) (red plot) obtained with numerical integration for t ∈ [0, T∗], T∗ > T′ (without considering the
problem of discontinuity).

3.1. Notions and Utilized Results

Notation 1. Denote using M the set of discontinuity points of f .

The set M has a zero Lebesgue measure and divides Rn to several m > 1 open disjuncts and

connected sub-domains Di ⊂ Rn, i = 1, 2, ..., m, Rn = ∪m
i=1Di on which f is continuous. Thus,

discontinuity points belong to the union of the boundaries of Di. In Example (7), M = {0}, which

determines in R the sub-domains D1 = (−∞, 0) and M2 = (0, ∞), where f is continuous.

Definition 1. f : Rn → Rn is called PWC if it is continuous throughout Rn \ M and, at M, has

finite (possible different) limits.

Definition 2. A set-valued function F : Rn ⇒ Rn is a function that associates with any element

x ∈ Rn, a subset of Rn, F(x) (see the sketch in Figure 3).

For more details on set-valued functions, see [20–22].

Definition 3. The graph of a set-valued function F : X ⇒ Y, where X, Y are non-empty sets, is

defined as follows (see Figure 3):

Graph(F) = {(x, y) ∈ X × Y|y ∈ F(x)}.
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To overcome the difficulty of finding solutions for PWC systems, IVP problems can
be restarted by using the Filippov approach [23], as a set-valued Fractional Differential
Inclusion (FDI) of

D
q
∗x(t) ∈ F(x(t)), for a.e. t ∈ I, (8)

where F is a set-valued function.
The existence and uniqueness of solutions of DIs of IO are studied in [20,21], while

numerical schemes can be found, e.g., in [24–28].

Figure 3. (a) The graph of a set-valued function F; (b) the values of F(x) for different values of x.

The set-valued function F can be defined in several ways, the most known being
Filippov’s regularization [23]:

F(x) =
⋂

ε>0

conv( f ({z ∈ Rn : ‖z − x‖ ≤ ε} \ M)). (9)

F(x) defined by (9) is a convex function, its values representing the convex hull of f , and
ε represents the radius of the ball centered in x. At the points x where f is continuous,
F(x) = f (x), i.e., F(x), consists of a single point { f (x)} (see Figure 3), while for x ∈ M,
F(x) is given by (9). It is important to note that for physical meanings, ε should have as
many small values as possible (ideally ε → 0, when the solution of the DI tends to the real
motion of the underlying physical system modeled by the discontinuous IVP (6)).

The regularization applied to one of the most used functions to define switch systems,
sgn, generates the so-called sigmoid function, denoted usually as Sgn (see Figure 4a,b):

Sgn(x) =

⎧
⎪⎪⎨
⎪⎪⎩

{−1}, x < 0,

[−1, 1], x = 0,

{+1}, x > 0.

(10)

Therefore, in the case of example (7), the discontinued problem transforms into the
following FDI (Figure 4c,d) for a.e. t ∈ I.:

Sgn(x)− 2 ∈

⎧
⎪⎪⎨
⎪⎪⎩

{5}, x < 0,

[−1, 5], x = 0,

{−1}, x > 0.

(11)

Now, the problem transforms into the FDI, D
q
∗x ∈ [−1, 5]. When the solutions starting

from negative or positive initial conditions reach the axis x = 0, the derivative D
q
∗x can now

take an infinite number of values within the segment of values [−1, 5], so that the problem
can be solved, even for x0 = 0 (see [20,21]). For x0 �= 0, the problem reads as a continuous
problem: D

q
∗x = 2 − 3sgn(x) = 5, for x0 ∈ D1 = (−∞, 0) and D

q
∗x = 2 − 3sgn(x) = −1 for

x0 ∈ D2 = (0, ∞).
Therefore, Filippov regularization opens the door for the possible existence of solutions

to discontinuous systems of IO and even of FO.
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Figure 4. (a) A graph of the sgn function; (b) a graph of the set-valued function Sgn; (c) a graph of
the discontinuous right-hand side of (7); (d) a graph of the set-valued function of (7).

Definition 4. The map F is upper-semi-continuous (USC) on Rn if for each x ∈ Rn, the set F(x)

is a non-empty and closed subset of Rn, and for each open set N of Rn containing F(x), there is an

open neighborhood B of x such that F(B) ⊂ N.

Remark 1. Filippov’s approach (9) ensures enough regularity so that if f is continuous at x, then a

solution to the IVP (8) satisfies the IVP (6) and any classical solution to the IVP (6) is a solution

to the IVP (8). On mild assumptions, DIs of IO, obtained with Filippov regularization, admit

generalized (Filippov) solutions [23]. As stipulated in [23], it is justified to call a solution for the

IVP (6) a solution for the IVP (8). For FDIs, existence results are presented in [29].

Definition 5. The single-valued function f : Rn → Rn is a selection (approximation) of a

set-valued function F, if f (x) ∈ F(x) for every x ∈ Rn (see, e.g., [20,21]).

Finding numerical solutions for DIs of IO represents a complex task (see e.g., [24–26,30]),
while numerical solutions for FDIs are, based on our knowledge, an even more challenging
and less studied topic. Therefore, proposing continuous approximation via selection theory
represents a successful approach.

Theorem 1. Cellina’s Theorem [20,21]: Let a USC set-valued function F : Rn ⇒ Rn with non-

empty convex values. Then, for every ε > 0, there is a local Lipschitz selection fε : Rn ⇒ Rn

such that

Graph( fε) ⊂ Graph(F) + εB

showing the sphere of radius ε (see the sketch in Figure 5a).

Generally, a set-valued function admits infinitely many selections, a fact that
represents a major advantage in approaching discontinuous systems coming from
practical problems.

Remark 2 ([20,21]). Because of the symmetric interpretation of a set-valued map as a graph, we can

say that a set-valued function satisfies a property if and only if its graph satisfies it. For instance, a set-

valued function is said to be closed if and only if its graph is closed. For a function f that is locally

bounded, its set-valued map obtained with Filippov regularization enjoys the following properties:
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it is USC and has non-empty closed and convex values (Péano functions ([20], Proposition 1,

p. 102, [21], Lemma 3, p. 67), which satisfies the existence result of solutions to DIs. For FDIs,

similar results can be found in [29].

Figure 5. (a) A sketch of a continuous approximation fε within a ε-neighborhood of the set-valued
function F; (b) a graph of the continuous ε-approximation for system (7).

The set-valued function defined with Fillipov’s regularization verifies Theorem 1 [31].

3.2. Numerical Integration of FO Switch Systems

Consider the FO counterpart of the IVP (1) defined with Caputo’s derivative:

D
q
∗x = fε(x) := g(x) + As(x), x(0) = x0, t ∈ I = [0, T]. (12)

The steps required to restart the PWC problem into a continuous problem are the
following:

(I) Firstly, the set-valued right-hand side, obtained with Filippov’s regularization, is

F(x) = g(x) + AS(x), x(0) = x0, t ∈ I = [0, T], (13)

with S(x) = [Sgn(x1), Sgn(x2), ..., Sgn(xn)]T being the set-valued sigmoid functions given
by (10).

(II) Next, the continuous approximation of the component Sgn(x) (Theorem 1) is

Sε(x) = [Sε(x1), Sε(x2), ..., Sε(xn)]
T ,

where Sε(xi), i = 1, 2, ..., n, are continuous approximations of the set-valued functions
Sgn(xi) given by, e.g., (15).

(III) The result regarding the continuous approximation of the IVP (12) is

Theorem 2 ([31]). The PWC IVP (6) can be restarted as the following continuous IVP of FO

: Dq
∗x = g(x) + A(x)Sε(x), x(0) = x0, t ∈ I, (14)

Theorem 2 represents the main result according to which it is demonstrated how a
PWC problem of IO can be transformed into a continuous one of FO. Thus, by applying
the algorithm in Figure 6, the discontinuous preloaded compliance system of FO (12) is
transformed into a continuous problem of FO (14), which can be studied both analytically
and numerically.
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Figure 6. The algorithm of the continuous approximation of the discontinuous IVP (6).

The algorithm described above is presented in Figure 6. It is important to note that in
the examples, step II can be omitted and the discontinuous function approximated directly
(step III).

One of the used approximations Sε of the set-valued functions sgn function, which
provides enough flexibility, has the following form:

Sε(x) =
2
π

arctan
x

δ
, (15)

where δ is a positive parameter that controls the slope of the approximation in the ε-
neighborhood of x = 0. A cubic polynomial approximation is presented in [32], where a
discussion on the δ influence of the approximation can be found. While approximations
like (15) are defined on I, in [32], the polynomial approximation is defined only in a chosen
local ε-neighborhood around the discontinuity, a fact that confers better properties to the
approximated function.

Once the continuity of the underlying problem is ensured by Theorem 2, the obtained
IVP can be numerically integrated via some numerical schemes for FDEs, like the ABM
method [19] used in this paper.

Reconsider example (7) by using approximation (15). Then, the discontinuous problem
is transformed via Theorem 2 into the following continuous IVP of FO:

D
q
∗x = 2 − 6

π
arctan

x

δ
≈ 2 − 3Sε(x), x(0) = x0, t ∈ I, (16)

with the approximation of the right-hand side presented in Figure 5b. Now, the problem
admits numerical solutions for t ∈ I, which can be determined with numerical schemes
for FDEs. In Figure 2b are the exact solution of the discontinuous FO problem on [0, T′],
T′ = 0.0505 (black plot), the solution of the approximated problem (16) (blue plot), and the
solution of the discontinuous IVP (7) (red plot) obtained with numerical integration for
t ∈ [0, T∗], with T∗ > T′, without considering the discontinuity x = 0. The differences can
be seen in Figure 2b.

3.3. Preloaded Compliance System of FO

Consider now the FO of the system modeling the preloaded compliance system (5).
Via Theorem 2, by applying the continuous approximation algorithm (see Figure 6) with hε

approximation presented in Figure 1c), one obtains the single-valued continuous FO system:

D
q
∗x1 = x2,

D
q
∗x2 = −2γx1 − x1 − Sε(x1) + P cos(x3), x(0) = x0, t ∈ I.

D
q
∗x3 = ν.

(17)
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Despite the fact that the form (17) is defined with three FDEs (see Figure 7a), required
to transform the standard form into an autonomous one, the dynamics of the system are
graphically described in the plane (x1, x2) (Figure 7b–d).

Figure 7. (a) The trajectory of the system (17) in space (x1, x2, ν); (b) attractive fixed point-
like. The zoomed-in detail reveals the influence of the sgn function; (c) periodic-like trajectory;
(d) chaotic trajectory.

Remark 3. Compared with the IO variant of the preloaded compliance system (2), its obtained FO

counterpart (17) presents several advantages: (1) The first one is that by applying the proposed

algorithm, the obtained problem is a continuous one, thus taking advantage of the existing tools

to study continuous systems. (2) The second one is the fact that with this approach, numerical

integration is more accessible compared with the IO case, which, as can be seen, e.g., in [1],

does not exit a clear unified way to integrate discontinuous systems. Thus, generally, at the

discontinuity surface, M, the considered solutions obtained (incorrectly) with some standard

methods for continuous systems are just “glued”. The third argument in favor of the proposed

algorithm, i.e., to transform the IO problem into a FO one, is the fact that, as mentioned in the

previous sections, FO variants generally offer a better characterization of the underlying IO system.

Note: (1) As known now, FO systems (continuous or discrete) cannot have periodic non-constant

solutions [33]. Besides the analytical proof in [33], this property can be explained due to the fact that

all the past history has to be taken into account (time-memory of FO systems is continuous-time or

discrete). Also, any equilibrium of a general FO nonlinear system described by Caputo’s derivative

can never be finite-time stable in the sense that the trajectory will never reach the equilibrium in

finite time [34].
(2) Numerical schemes for FDEs (and also for DEs),require at least the continuity of the

underlying equations [19]. However, the numerical methods can directly (abruptly) be applied

to discontinuous problems too, but this method, which is still poorly understood, can lead to

questionable results. Therefore, the correct results for the integration of IVP (6) should be obtained,

e.g., after the continuous approximation of the underlying problem.
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While in the IO variant of the preloaded compliance system (2), there are periodic
solutions abruptly changing the stability [12], in (17), this does not happen anymore (see
Note 1).

Consider q = 0.95 and δ = 1e − 3 and integrate the system (17). In Figure 7b, an
attractive fixed point-like element is presented (see Note 1). For p = 2, in Figure 7c, a
periodic-like trajectory is presented. Even though visually, the orbit looks periodic, it is not
(see Note 1). A chaotic trajectory is presented in Figure 7d. The apparent corners, visible in
Figure 7b–d, are due to the sgn function. However, due to the continuous approximations,
these corners are in fact smooth (see the zoomed-in Figure 7b).

4. Discussion and Conclusions

In this paper, the continuous approximation of discontinuous (switch) IVPs of IO is
proposed as a novel technique to approach a class of dynamical systems of FO. Using the
theory of differential inclusions and Cellina’s Theorem, the discontinuous IVP is restarted as
a continuous problem of FO, which can be integrated with some numerical scheme for FDEs.
First, it is shown that the Filippov regularization applied to the discontinuous function
allows the existence of a sufficiently regular set-valued map, so that the underlying FDI
verifies Cellina’s Theorem. As a consequence, the discontinuous problem can be restarted
as a continuous one. Also, the problem of using numerical integration, without considering
the discontinuity, is treated on a concrete example.

In the case of a practical example, a preloaded compliance system is considered.
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